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Introduction 

Breast cancer is the most common cancer type that affects women globally [1]. In the 
United States, due to the long life spans, the incidence is even higher: every one woman 
over eight will develop breast cancer in her lifetime. It was estimated that approximately 
178,480 new invasive breast cancer cases would be found in American women in 2007 
[2]. Moreover, breast cancer is one of the leading causes of cancer-related women 
mortality, secondary only to lung cancer. It is predicted that the disease will kill about 
40,460 US women in 2007 [2]. 
 
Presently there is no effective way of preventing the disease. However, detection of the 
cancer at its early stage has been found to significantly improve survival rates [3-6]. For 
example, when breast cancer is detected at the localized stage, the five-year relative 
survival rate is 98% [2]. By contrast, when it is not found until metastasized, the five-year 
survival rate drops dramatically. In addition, when the cancer is found earlier, more 
viable treatment options are also available [7-9]. 
 
X-ray mammography is presently the primary tool for early detection of breast cancer. 
The standard screening procedure is to acquire a pair of two-dimensional projection 
images: mediolateral oblique (MLO) view and cranial-caudal (CC) view. The 
abnormalities can manifest themselves on a mammogram as either masses, clusters of 
microcalcifications, or architectural distortions even before any symptom shows up. An 
annual screening program based on mammography is recommended for women older 
than forty years or younger women with high risk by National Cancer Institute, American 
Cancer Society and American College of Radiology.  
 
While x-ray mammography has been proven to be effective, it is not perfect in its 
detection sensitivity of breast lesions due to several limitations such as two-dimensional 
projection data acquisition and restricted range of linear optical response of the detector. 
Overall, it has a sensitivity within the range of 63% to 88% depending on the patient’s 
age group, family history [10] and breast density [11]. For women with dense breasts, the 
sensitivity is lower since in their mammograms the dense appearance of the breast tissue 
is more likely to obscure any abnormalities and makes the detection of breast cancer even 
more challenging [12]. In addition, the situation gets complicated by the fact that breast 
density is also a risk factor by itself, which means that women with dense breasts tend to 
be more likely to get breast cancer.  
 
With the advent of high-resolution flat-panel detectors at the end of the 1990s, dedicated 
breast CT technology is emerging, which offers the potential to detect breast lesions 
among women with dense breasts.  
 
Unlike a conventional CT system, where the x-ray tube/ detector move around the torso 
of a patient, a dedicated breast CT system has a joint x-ray tube/detector movement just 
around a breast. It is set up as shown in Figure 1: a woman patient lies prone on a lead-
shielded table with one breast hanging freely through a hole on the table. The x-ray tube 
and the flat panel detector are installed vertically underneath the table. The tube-detector 
assembly rotates around the exposed breast of the patient. By this design of the dedicated 
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system, the field of view (FOV) of the detector can be fully employed for breast imaging. 
What’s more, since other tissues do not attenuate the x-ray beam, the effective glandular 
dose delivered to the patient can be lowered to match the two-view screening 
mammogram for the same breast, as is demonstrated by Boone et al in 2001 [13]. 
 
There are five research groups investigating dedicated breast CT. They are: Dr. Boone et 
al in University of California, Davis [14-17], Glick et al in University of Massachusetts 
[18-20], Ning et al in University of Rochester [21-24], Shaw et al in University of Texas 
M.D. Anderson Cancer Center [25-27], and Tornai et al in Duke University [28-32].  In 
addition, they all have fabricated their own dedicated breast CT systems. These breast CT 
systems differ in their detailed technical aspects: the choice of x-ray beam, the x-ray 
source orbit, and the peak voltage and tube current values used.  
 

 

 

Figure 1: Illustration of a dedicated breast CT system. The x-ray tube and flat-panel detector rotate 
together around the breast, which is the only region to be illuminated. 

  
This dissertation has been conducted in close collaboration with Boone’s breast CT 
research group, which provided raw human subject datasets and corresponding geometric 
calibration results. Based on the raw data provided by them, we developed the techniques 
for image improvement via the scatter compensation and/or denoising. Finally, a pilot 
computer aided detection (CAD) study was conducted to compare the original datasets to 
the datasets with image processing. 

Report Body 
Task 1: Develop and test a unique two-dimensional Bayesian image processing 
technique on the projection data of cone-beam breast Computed Tomography 
(breast CT) obtained without a grid. (Months 1-4) 
This task has been completed and the results are incorporated into the papers listed under 
the category of reportable outcomes. This task is split into two subtasks. The first subtask 
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is to develop an algorithm for scattered radiation removal. The second subtask is to 
reduce the quantum noise from breast CT data. 
 
For the first subtask, a model-based algorithm was designed and implemented for scatter 
reduction. To account for the energy-integrating characteristic of the flat-panel digital 
detector, Gaussian distributions were employed to approximate the signals recorded at 
individual pixels of the detector. For the task of removing scattered radiation, a Gaussian 
noise model was proposed. The Maximum Likelihood Estimator (MLE) was obtained via 
an Expectation Maximization algorithm in an iterative manner. With more iteration steps, 
the high frequency noise in the image would also be amplified. In order to suppress this 
side effect, the Maximum a Posteriori (MAP) estimator was obtained by combining the 
Gaussian noise model with a Gibbs prior via Bayes rule. The technical details can be 
found in the paper corresponding to reportable outcome #2. 
 
Figure 2 shows the comparison between the radiographs of an anthropomorphic breast 
phantom with and without an anti-scatter grid, and MAP processed radiograph on the one 
without the grid. Table 1 is the residual scatter fraction (RSF) and contrast to noise ratio 
(CNR) measurements on these three images. It is shown that with our algorithm, the 
scattered radiation on the images acquired without a grid can be reduced down to the 
level achieved by using a grid. Meanwhile, the CNR of the processed image is twice that 
of the image acquired with a grid.  
 

               (a)            (b)      (c) 
   
 
 
            
             
 
 
Figure 2: Radiographs of an anthropomorphic breast phantom acquired on Siemens prototype FFDM 
system (a) with and (b) without an anti-scatter grid; (b) the MAP algorithm processed image based on (b).  
The white disks are the beam stop (made of lead) array for scatter radiation measurement. 

 

Table 1: Corresponding residual scatter fraction (RSF) and contrast to noise ratio (CNR) results for the 
three images shown in Figure 1.  
 With grid Without grid Without grid; scatter reduction 
RSF 11% 45% 10% 
CNR 7.04 6.99 15.29 
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For the second subtask, a partial-diffusion-equation (PDE) based denoising technique 
was developed for noise removal in breast CT. It was observed that the line integral 
images (converted from the raw images by logarithmic operation) had the following 
property: line integrals through the breast close to chest wall have much higher variance 
than those through the breast close to nipple. 
 
We derived a theoretical formula between the line integral variance and the number of 
photons hitting the detector at a specific pixel region:  

! 

var(lij ) "
1

#ij
.           Equation 1 

The details of the derivation can be found in the paper corresponding to reportable 
outcome #3. Based on this formalism, we proposed a PDEtomo (abbreviation for: PDE for 
tomography/tomosynthesis) algorithm for breast CT data noise removal.  
  
  
Task 2: Reconstruct the three-dimensional breast image based on the processed 
projection data from Task 1. (Months 5-8) 
This task has already been completed and some results are shown in the reportable 
outcome #3. A Feldkamp-type filtered back projection (FBP) algorithm [33] was custom-
written and used for the cone-beam reconstruction of the breast CT data. 
 
For the results shown in Figure 3, the PDEtomo technique was applied to the line integral 
images converted from raw projections. The processed projection images were then fed 
into the FBP core for reconstruction. The reconstructed breast CT volume provided 
unique anatomic information of the breast. In addition, the PDEtomo technique was very 
effective in removing the noise while maintaining the details. 
 

 
Figure 3: Reconstructed coronal sections of a breast of a human subject. The section thickness is 0.5 mm. 
The top row is derived with the original dataset. The bottom row is derived with the PDEtomo processed 
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dataset. It is manifest that PDEtomo processed volume has remarkable less noise than the original volume 
while maintaining the details. 
 
 
Task 3: Apply the algorithm in Task 1 to the two-dimensional slices of the 
reconstructed three-dimensional breast image from the unprocessed projection data. 
(Months 9-12) 
This task and Task 4 were aimed at developing variants of PDE denoising techniques that 
could be used at different steps in the reconstruction process, which was illustrated in 
Figure 4.  
 

 
Figure 4: Illustration of possible steps in the reconstruction process that an image denoising module can 
be applied to in dedicated breast CT. 

 
However, applying a denoising technique in step 1 would not be very effective due to the 
nonlinear operation of the preprocessing step. Only step 2, 3 and 4 were considered. All 
together three variants of the Partial Diffusion Equation based denoising techniques were 
implemented for this study, corresponding to the three steps considered. Firstly, the 
PDEtomo technique described in Task 1 was applied at step 2. Secondly, the standard two-
dimensional PDE technique (denoted by PDE2D) was applied at step 3, for the completion 
of Task 2. Finally, a three-dimensional PDE technique (denoted by PDE3Dpost) was used at 
step 4, for the completion of Task 3. The comparison between PDEtomo and PDE2D were 
shown in Figure 7, which indicated that PDEtomo outperformed PDE2D.  
 
 
Task 4: Develop and test three-dimensional Bayesian image-processing technique on 
the reconstructed image based on the unprocessed projection data acquired without 
a grid. (Months 12-20)  
This task has been completed. Extending the neighborhood system expands to six 
neighbors along x, y and z directions, a three-dimensional PDE technique denoted as 
PDE3Dpost was developed and applied to the reconstructed breast CT dataset for noise 
removal.  
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To compare PDE3Dpost with PDEtomo, a simulated breast was generated with embedded 
contrast-detail phantoms. The reconstructed coronal slice containing the center of 
contrast detail phantoms without noise was shown in Figure 5 and Figure 6.  
 
               (a) Ideal     (b) With Noise: I0=2.5e4 

 
               (c) PDE3Dpost    (d) PDEtomo 

 
Figure 5: Step comparison at I0=2.5e4. To (a) an ideal contrast detail phantom, noise is added to yield (b) 
the initial image without any denoising. (d) PDEtomo noise removal before the FBP reconstruction is better 
than (c) after reconstruction. 
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              (a) Ideal     (b) With Noise: I0=2.5e4 

 
               (c) PDE3Dpost    (d) PDEtomo 

 
Figure 6: Step comparison at I0=1e4. Figure 5(b) is noisier than Figure 6(b). For subfigures (c) and (d), 
they come to the same conclusion: (d) PDEtomo applied at step 2 is better than (c) PDE3Dpost applied at step4. 
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Figure 7: Comparison between denoising applied to reconstruction steps 2, 3 and 4, using CNR and NCC 
as the criteria. Denoising at step 2 before reconstruction consistently provides higher number of detectable 
lesions or sensitivity, as does increasing the exposure level. 

 
Visual comparison between PDEtomo and PDE3Dpost processed volumes showed that 
PDEtomo resulted in superior denoised volume than PDE3Dpost. Even though the background 
noise were matched for two volumes, as was shown in Figure 5 and Figure 6, PDE3Dpost 
processed volume exhibited some unpleasant mottle, which was especially true in Figure 
6 (c). The noise mottle was due to the FBP reconstruction process, which correlated the 
independent quantum noise in the projection views. By contrast, PDEtomo processed 
volumes were exempt from this effect.  
 
Quantitative results based on the lesion detection sensitivity of the contrast detail 
phantom (shown in Figure 7) agreed with the qualitative evaluation. While the CNR and 
NCC criteria didn't give the same number, they were very close to each other and 
provided the same trend: PDEtomo processed volumes (step 2) have more detectable 
lesions than processed ones by PDE2D (step 3) and PDE3Dpost (step 4). Moreover, given 
that the background noise was matched, when the exposure level was higher, the lesion 
detection sensitivity was higher for all three variants of PDE technique according to the 
CNR criterion. 
 
By optimizing each of them independently, it was found that denoising before 
reconstruction provided better images than after reconstruction. This is understandable, 
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since some fine details in the volumes can be overwhelmed by the abundant noise during 
the reconstruction step. Applying denoising afterwards cannot recover that information. 
By contrast, if a denoising technique is applied before reconstruction, it is possible for the 
fine details to be preserved. As far as we know, this is the first time that anybody has 
studied the effect of where to apply denoising in dedicated breast CT. 
 
 
Task 5: Develop a Computer Aided Diagnosis tool for detecting breast mass lesions 
based on the projection data. (Months 21-32)  
At this time, very few groups are conducting clinical trials with dedicated breast CT. We 
were very fortunate to have secured from Boone et al at University of California Davis 
20 human subject datasets to be used for the breast mass detectability study. As these are 
prospectively collected cases, the ground truth of these 20 volumes is unknown. In 
present study, we will assume that there is no lesion in the volumes. And all the lesions of 
interest will be simulated.  
 
The procedure of simulating a mass is as follows: 
1. For a given human subject dataset, the reconstructed volume was used as the 

reference. The location of 10 masses that would be embedded into the volume 
was randomly chosen. 

2. Spherical masses with fixed size and contrast were put at the locations selected in 
step 1, and projected onto a virtual 100% DQE detector using a virtual 
monochromatic cone-beam projector, which had the same system geometry, 
projection angles and reconstruction parameters as the individual human subject 
dataset. These projection images of masses would then be added to the original 
projection images of human subjects to get the synthetic projection sets. 

3. The synthetic projection sets either went through the afore-mentioned PDEtomo 
denoising technique followed by FBP reconstruction or directly went for FBP 
reconstruction. 

4. The three-dimensional region of interest (ROIs) could then be retrieved from the 
reconstructed volumes. In the present study, instead of using 3D ROIs, only the x-
y plane section containing the mass (i.e., 2D ROIs) was retrieved for numerical 
observer study. 

 
The human subject ROI dataset was comprised of the total of 400 ROIs: 200 with and 
200 without simulated masses. A sample ROI was shown in Figure 8. 
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       (a) Orig; nomass        (b) Orig; mass 

 
              (c) PDE; nomass     (d) PDE; mass 

 
Figure 8: Sample ROIs for simulated lesion with a diameter of 4 mm and contrast of 2%: Original ROIs (a) 
without mass and (b) with a mass, and, PDE denoised ROIs (c) without mass and (d) with a mass. 

 
 
Three numerical CAD tools are used: SKE/BKE observer, LG-CHO observer and the 
SNR-based observer. 
 
Ideal Observer for SKE/BKE 

The task of an observer is to detect these masses from background tissues. It can 
also be formulated as the following hypothesis testing: 

! 

H
0
: x = n

H
1
: x = n + s

 .         Equation 2 

The null hypothesis represents the mass absent case, whereas the alternative hypothesis 
represents the mass present case. If treated as signal known exactly (SKE) case, 
according to signal detection theory [34], the optimal detector is a likelihood ratio 
detector. Assuming the background noise n follows a Gaussian distribution with a 
covariance matrix of Σ, the log likelihood ratio has the following form: 

xsx
T 1))(ln( !
"=# .         Equation 3 

If the background noise follows independent and identical distributed (i.i.d.) Gaussian, 
i.e., the covariance matrix Σ is an identity matrix, then Equation 3 can be further 
simplified to: 
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2/))(ln( !" xsx
T

= .         Equation 4 

Usually real breast tissue background does not satisfy the i.i.d. condition, so the ideal 
observer shown in Equation 4 will perform sub-optimally on the real breast tissue 
background case. 
 
Laguerre-Gauss Channelized Hotelling Observer (LG-CHO) 
When the covariance matrix Σ is not an identity matrix, the likelihood ratio observer 
shown in Equation 3 is equivalent to a Hotelling observer [35]. The estimation of the 
covariance matrix Σ requires a large number of training cases, which is presently not 
available in breast CT. Alternatively, Laguerre-Gauss channelized hotelling observer 
(LG-CHO) [35, 36] can be used for this purpose.  
 
The nth order Laguerre function has the following form: 

! 

L
n
(x) = ("1)m

n

m

# 

$ 
% 
& 

' 
( 

m= 0

n

)
x
m

m!
.       Equation 5 

 
The LG-CHO has nth order template with the form of: 

! 

LG
n
(r) = exp("

#r2

a
2
) $ L

m
(
2#r2

a
2
) ,      Equation 6 

where a is a free parameter proportional to the standard deviation of the Gaussian kernel 
through 

! 

a = 2"# .         Equation 7 
 
CNR Observer 
Traditionally, one would like to use Rose model of statistical detection for a simple lesion 
detectability study based on x-ray projection images. However Rose model does not 
directly apply to the breast CT reconstructed slices in this study since the physical 
measurement on these reconstructed slices is linear attenuation coefficients. Instead, the 
contrast to noise ratio for each ROI is calculated and used as the decision variable. Given 
the uncertainties associated with any model observer study, it is desirable to be able to 
compare all results against such a simple, well-understood technique. 
 
ROC Analysis 
The receiver operating characteristic (ROC) analysis is a comprehensive tool for 
performance measure of the numerical observers. The horizontal axis represents False 
Positive Fraction (FPF), which equals to (1- specificity), and the vertical axis represents 
True Positive Fraction (TPF), which equals to sensitivity. They both range from 0 to 1. A 
ROC curve can be summarized by its area under the curve (AUC). The larger AUC value, 
the better the performance is, while AUC of 0.5 corresponds to random guessing. The 
area can also be calculated via semi-parametric fitting resulting in an area index denoted 
as Az [37]. 
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Task 6: Test and compare the performances of the CAD developed in Task 5 
applied to processed projection data from Task 1 with the CAD performance on the 
projection data without Bayesian processing. (Months 33-36) 
This task has been completed. The three numerical CAD tools in Task 5 were applied to 
the clinical data. 
 
The human subject background ROC analysis based on CNR observer is shown in Figure 
9 for simulated mass with a diameter of 4 mm and contrast of 2%. The histograms of 
CNR for original and PDE processed datasets with and without simulated masses were 
shown in Figure 9 (a). The corresponding ROC curves were plotted in Figure 9 (b). The 
Az value of the PDE processed dataset (0.770 ± 0.023) was higher than the Az value of 
the original dataset (0.801 ± 0.022). The p value was less than 0.009, indicating that the 
difference was statistically significant. AUC values of the three types of numerical 
observers using real anatomical background from breast CT were shown in Table 2 for 
lesions of 5 mm and 10%, 5 mm and 3%, and 4 mm and 2%, respectively. For all the 
cases, the CNR observer gave the highest AUC values, followed by 1st order LG template, 
and the ideal observer gave the lowest AUC values. For masses with 4 mm diameter and 
2% contrast, the ROC performance of ideal observer reduced to the chance curve. 
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(a) 

 
  (b) 

 

Figure 9: CNR observer results for simulated lesions of 4mm and 2% embedded in real anatomical 
backgrounds. CNR histograms for original and PDE processed ROI databases are shown in (a) and the 
corresponding ROC curves are shown in (b). The Az value of the PDE processed dataset (0.770 ± 0.023) is 
statistically higher than the Az value of the original dataset (0.801 ± 0.022). The p value is less than 0.01. 
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Table 2: AUC values for the three types of numerical observers using real anatomical background from 
breast CT.  

Lesion CNR observer LG-CHO observer Ideal observer 

 Original 
PDE 

processed 
Original 

PDE 

processed 
Original 

PDE 

processed 

5mm & 

10% 

 

0.999 

 

0.997 0.999 0.999 0.896 0.904 

5mm & 

3% 

 

0.877 

 

0.883 0.850 0.853 0.690    0.700 

4mm & 

2% 

 

0.770 

 

0.801 0.703 0.702 0.446 0.443 

 
 
For the ROIs with real anatomical backgrounds, the ROC curves vary with respect to the 
mass size and contrast. For masses with 5 mm and 10%, it is very easy to detect them, 
whereas for masses with 4 mm and 2%, the detection task is extremely challenging. Even 
in such conditions, PDEtomo denoising always provided statistically significant 
improvements in performance, as well as higher CNR values and better visual appearance.  
 
A common problem shared by all the observers is the tendency to perform too well due to 
the fixed, single type of lesion. Even for the subtlest lesions that were virtually 
impossible to see by the human eye, the observers routinely performed quite well with 
ROC areas approaching 0.8. As such, such model observer performances should not be 
construed as what would be typical of clinical performance by radiologists. Instead, these 
studies offer valuable insight in terms of comparing one technique against another in a 
fair (or equally unfair) fashion.  
 
In summary, several numerical observers were used to analyze the mass detectability in 
breast CT. With real anatomical background with fixed size lesion, PDEtomo denoised 
images have higher detectability, higher CNR and better qualitative appearance. 

Key Research Accomplishments 
• Proposed and developed the Gaussian noise model, and showed its effectiveness 

in removing the scattered radiation based on Full Field Digital Mammography 
data; 
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• Proposed and developed three variants of PDE techniques to be used at different 
steps in FBP reconstruction process for volume denoising in breast CT: PDEtomo 
algorithm, PDE2D algorithm, and PDE3Dpost algorithm; 

• Developed a complete simulation routine of breast CT data and masses; 
• Comparison between the three variants of PDE techniques showed that denoising 

before reconstruction resulted in better images than denoising after reconstruction; 
• Clinical breast CT data have been reconstructed; 
• Application of the PDEtomo algorithm on simulation data and clinical data has 

shown improvement of image quality using CNR and resolution as figures of 
merit; 

• Three numerical observers were custom-written; 
• Application of CAD tools on the clinical breast CT data with simulated masses 

showed that PDEtomo processed volumes resulted in higher detectability than the 
original volumes. 

Conclusions 
Dedicated breast CT imaging is a novel breast imaging modality. Compared to 
conventional mammography, breast CT may improve lesion detection while using a 
comparable radiation dose. Since it can totally remove the overlapping of tissues, it will 
be even more beneficial for women with dense breasts.  
 
Still, there is a lot to be done for advancing the breast CT technology. As a result of its 
cone beam geometry, however, breast CT suffers from image degradation due to scatter 
radiation. Moreover, the breast CT images divide the dose of mammography among 
hundreds of projection views, resulting in considerable quantum noise. It is therefore 
desirable to reduce scatter and noise in the reconstructed breast volume without loss of 
spatial resolution.  
 
Several new image-processing techniques were developed based on the unique physical 
properties of this modality. Firstly, a Gaussian noise model was proposed for scatter 
removal, which was a statistical model based post-acquisition scatter compensation 
technique. Algorithms using maximum likelihood estimation and maximum a posterior 
estimation of scatter-free images were evaluated.  
 
Secondly, several partial diffusion equation (PDE) based denoising technique were 
developed for dedicated breast CT. The techniques were thoroughly evaluated based on 
simulation. Specifically two issues were considered: (1) where in the reconstruction 
process to apply a denoising technique and (2) which of the spatially adaptive techniques 
is a better choice. The technique was then applied to human subject data.  
  
Finally, the project was concluded with computer aided detection tools for the assessment 
of mass detectability based on the original breast CT volumes and those with image 
processing. The previously described image processing tools were analyzed for the 
clinically relevant task of lesion detectability in human subjects, using numerical 
observers and ROC analysis methodology.  
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Using images obtained on a full field digital mammography system, the Gaussian noise 
model demonstrated effective scatter removal. The denoising techniques were also 
promising. Applying a denoising technique before reconstruction provides better images 
than after reconstruction. A PDE technique taking into the account the non-uniform 
distribution of the noise in the projection image after the preprocessing step provides 
excellent denoised data with sharp edges. It outperforms two other spatially adaptive 
techniques (Wiener and 2D ATM filters). The preliminary ROC study showed that with a 
fixed size lesion in real anatomical backgrounds, PDEtomo denoised images had higher 
detectability, higher CNR and better qualitative appearance. These are the first steps 
towards the eventual goal of optimizing image quality and thus diagnostic utility for the 
novel modality of dedicated breast CT imaging. 

Reportable Outcomes 
The following is the list of papers resulted from this project, which are attached to the 
end of the report as appendices. 
 
1. Qing Xia, Gaussian Noise Model for Scatter Compensation in Digital 

Mammography (M.S. thesis, Duke University, December 2005). 
2. Jessie Q. Xia, Georgia D. Tourassi, Joseph Y. Lo, Carey E. Floyd Jr., On the 

Development of a Gaussian Noise Model for Scatter Compensation. Proceedings of 
SPIE 6510-93:1-10, 2007. 

3. Jessie Q. Xia, Joseph Y. Lo, Kai Yang, Carey E. Floyd Jr., John M. Boone, 
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Abstract 

Breast cancer is the most common cancer type that affects women worldwide. In the 

United States, every one woman over eight will develop breast cancer in her lifetime. 

Although no effective way of preventing the disease has been found, early detection 

of the cancer through noninvasive breast imaging is desirable because it warrants 

more choices of viable treatments and higher survival rates. Digital Mammography is 

among such imaging techniques.  

Compton scattering of x-ray photons is one mechanism of attenuating the x-ray 

beam, which in turn forms the contrast in a projection image. However, its detection 

in the projection image is a cause of image quality degradation since it will add noise 

to the image and reduce the contrast. Therefore many efforts are made to reduce the 

detected scatter radiation in the projection image either by applying some hardware 

during acquisition or by using post-acquisition software compensation. The method 

presented in this thesis belongs to the latter category. A Gaussian noise model for 

scatter is proposed and its EM ML estimation is derived. In addition, Bayesian MAP 

estimation is obtained by applying a Gibbs prior with a discontinuity adaptive 

potential function. 

The previously proposed Poisson noise model is flawed in that the radiation does 

not directly follow a Poisson distribution. Instead, a Gaussian distribution can 

reasonably describe the radiation data. When a computation method like Gibbs 
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sampling is used, Poisson noise model will give erroneous results due to the incorrect 

modeling. The conversion factor between radiation and the number of photons is 

energy dependent. If it is approximated by a constant independent of energy, then the 

Poisson noise model can be justified through a latent data augmentation scheme 

when EM algorithm is used.  

The reason we pursue the EM computation in this thesis is that it has a nice 

analytic formula. Due to the large number of pixels in an image and the existence of 

a convolution operation, the computation can be greatly reduced with this analytic 

formula. 

The digital mammography image of a uniform breast phantom is processed by 

the MLE and MAP algorithms of Poisson model and Gaussian model. The results are 

compared through the image quality metrics like the residual scatter radiation, the 

contrast-to-noise ratio and the spatial resolution. 

From the results we get, it is shown that Gaussian noise model can be used to 

reduce the scatter radiation in the digital mammography images. Its performance is 

improved by incorporating Gibbs priors without loss of resolution. In addition, 

Gaussian noise model works slightly better in improving the contrast-to-noise ratio 

than the Poisson noise model. 
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Chapter 1 

Introduction 

1.1 Digital Mammography 

Breast cancer is the most common cancer type that affects women worldwide [1]. In 

the United States, every one woman over eight will develop breast cancer in her 

lifetime. And it was estimated that approximately 211,240 new cases of invasive 

breast cancer would be found in American women and the disease would kill 40,410 

women in 2005 [2]. Although there is no effective way of preventing the disease, it is 

desirable to find early signs of the cancer (e.g., impalpable masses and/or 

micro-calcifications) through noninvasive breast imaging techniques such as x-ray 

mammography. The detection of the cancer at its early stage warrants more choices 

of viable treatments and higher survival rates[3-5]. 

An x-ray mammography system is typically comprised of two major parts: the 

x-ray source and the detector. Depending on the type of the detector, the 

mammography system can be either analog or digital. The analog system utilizes a 

screen-film as the detector, and is the only FDA approved screening tool aiming at 

the early detection of the breast cancer for women more than 40 years old. While it 

has been proven to be effective, it has several shortcomings: 1) the analog film has 

narrow latitude. Overexposure or underexposure of the film will result in a poor 
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image which will be unacceptable for breast cancer detection and diagnosis. 2) The 

film development is critical for the quality of the mammogram as well as 

time-consuming. 3) The radiology department needs a lot of space and personnel to 

keep the films. And 4) the transfer of the films between departments or hospitals not 

only is a lot of hassle, but also causes the wear and tear of films, which is inevitable 

since they are often the only copies of the case. Due to these limitations of using 

films as the recording media, many radiology departments are trying to go film-less. 

It is realized by the digital mammography technique.  

A digital mammography system utilizes a flat-panel detector instead of a 

screen-film detector. Recent studies show that the diagnostic accuracy based on 

digital mammograms is comparable to those based on conventional film 

mammograms [6, 7]. In some situations, the digital mammography works even better 

[6]. In addition, a digital mammography system enjoys the following merits. After 

x-ray exposure, a digital image of the breast can be readily read out from the 

flat-panel detector within seconds. There is no overexposure or underexposure issue 

related with this type of image since the flat-panel detectors have a wide latitude and 

excellent linear relationship between pixel values and exposure levels. The image 

can be saved into different media. The transfer and copy of the images are easy, fast 

and reliable. A very recent study [8] shows that the digital mammography images can 

be accurately transferred via the broadband internet, which will greatly alleviate the 

problem related to the shortage of mammographers as well as improve the accuracy 

of the diagnosis. Moreover, the digital format of images makes advanced imaging 
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(e.g., breast tomosynthesis [9, 10]) and image processing techniques (such as the 

technique presented in the thesis) feasible.  

1.2 Scatter Radiation and Its Degrading Effect on the Quality of Medical 

Images 

X-ray source emits x-ray photons with different energies. Figure 1.1 shows a  
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Figure 1.1: Typical energy spectrum of an x-ray beam. The abscissa represents the 
energy levels that a photon can possibly take on, and ordinate represents the number 
of photons having the corresponding energy level. The peak voltage (in the unit of 
kVp) corresponds to maximal energy level. The spectrum shown here has a peak 
voltage of 52.5 kVp. 

typical energy spectrum of an x-ray beam. When the beam passes through the object 

to be imaged such as a breast, it interacts with the matter and gets attenuated. At the 
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diagnostic energy level, there are three basic mechanisms for x-ray attenuation: 

photoelectric effect, Compton scattering and Raleigh scattering [11]. Raleigh 

scattering, also called coherent scattering, accounts for less than 5% of the total 

interactions between x-rays and the matter. Therefore it is often omitted for 

consideration. Photoelectric effect occurs when x-ray photons are totally absorbed by 

the atoms within the tissue, as illustrated by ray 1 in Figure 1.2. Compton scattering 

occurs when the photons are deflected from their incident path with partial energy 

loss. These photons are called scattered photons or scatter radiation, as shown by ray 

2 in Figure 1.2. The rest will survive the attenuation and are called the primary 

photons or primary radiation (ray 3 in Figure 1.2). The primary radiation differs from 

location to location, which forms the contrast of various tissues in the final image. 

The scatter radiation escaped from the imaged object can either miss the detector 

or impinge on it. The latter will be inevitably detected due to the fact that the detector 

typically has broad energy sensitivity and does not effectively reject photons that 

have lost energy by scattering. The total radiation detected is thus the sum of the 

primary radiation and the scatter radiation. The detection of scattered photons in 

locations that are different from their original path will add a component of noise and 

cause the blurring of the image. 
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Figure 1.2: Illustration of possible interactions between x-ray photons and the matter 
within the diagnostic x-ray energy range. The ellipsoid represents the object to be 
imaged. Photons can be totally absorbed by the photoelectric effect (ray 1), or be 
scattered through Compton scattering (ray 2) and Raleigh scattering (a very small 
portion, thus neglected). The rest will survive the attenuation and are called the 
primary photons or primary radiation (ray 3). 

To see how detected scatter radiation adversely affect the quality of a medical 

image, let’s take a look at the simple example shown in Figure 1.3. An ellipsoid 

lesion is embedded in a uniform background. In the ideal case where no scatter 

radiation is detected, the total radiation is equal to the primary radiation. In Figure 

1.3 (a), assume radiation in the background is P0 and radiation in the lesion is P1, 

then the contrast of the lesion is C1 = (P1-P0)/P0. If in practice, a constant scatter 

radiation S is added all over the image (shown in Figure 1.3(b)), then the radiation in 

the background becomes T0 = P0+S and radiation in the lesion becomes T1 = P1+S. 

The contrast of the lesion in this image will be C2 = (T1-T0)/T0 = (P1-P0) / (P0+S) = 

C1 *[P0 / (P0+S)], which is smaller than C1. That is, the detection of scatter radiation 

reduces the contrast of the lesion. In cases where scatter is large, lesions can even be 



6 

obscured. 

Figure 1.3: A simple example to demonstrate the adverse effect of detected scatter 
radiation on image quality. An ellipsoid lesion is embedded in a uniform background. 
(a) The ideal image without scatter radiation is shown. (b) The actual image is shown, 
which is the sum of primary radiation and scatter radiation. The contrast of the lesion 
is decreased. 

1.3 Scatter Compensation 

In summary, the scatter radiation is a physical phenomenon, which together with 

photoelectric effect causes the attenuation of the x-ray beam. The detection of scatter 

radiation on the detector will degrade the quality of the image and thus adversely 

affect the medical diagnosis. This issue exists widely in many imaging techniques 

such as Single Photon Emission Computed Tomography (SPECT) [12], Positron 

Emission Tomography (PET) [13], and projection radiographies like chest 

radiography [14] and mammography [15]. Therefore, it is important to reduce the 

scatter radiation that is detected. Or in other words, scatter radiation needs to be 

compensated. 

There are two general categories of scatter radiation compensation methods: one 
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is hardware compensation such as the application of anti-scatter grids [16], slot 

scanning systems [17], or air gaps [18]; the other is software compensation via 

post-acquisition image processing, such as simple estimation-subtraction [19], 

convolution-subtraction [20], de-convolution [21], artificial neural networks [22], 

maximum likelihood expectation maximization (EM-MLE) [23], or Bayesian image 

estimation [24, 25]. 

 

Figure1.4: An anti-scatter grid can be added on top of the detector to remove scatter 
radiation. However, as shown by the middle ray, some primary radiation will be 
blocked as well. To maintain the image quality, the patient dose has to be increased. 

An anti-scatter grid is routinely used on a clinical screen-film mammography 

system. Figure 1.4 illustrates how an anti-scatter grid can be used to reduce the 

scatter radiation. The orientation of the grid slots is parallel to the primary radiation. 

Most primary radiation will pass through the slots and reach the detector. Scatter 

radiation, by contrast, will mostly hit on the metal slits and be absorbed by them. 



8 

Thus an anti-scatter grid effectively removes many scatter radiation. Its major 

drawback is that it also removes some primary radiation, as shown by the middle ray 

of Figure 1.4. To maintain the same image quality, the magnitude of the x-ray beam 

needs to be increased, which will also increase the total absorbed dose of the patient.  

By contrast, post-acquisition image processing techniques won’t change the dose 

that a patient receives. In addition, some studies [15, 24] show that they can be more 

effective than an anti-scatter grid in scatter compensation. 

A fundamental assumption behind the image processing techniques is that the 

scatter radiation can be approximated by the convolution of the primary radiation and 

a scatter kernel. It is verified both theoretically [26] and empirically [27, 28]. In the 

two-dimensional case, if Y is used to represent the matrix of detected total radiation 

at each pixel, D for the matrix of the primary radiation, S for the matrix of the scatter 

radiation, and P for the matrix of the scatter kernel, then the following equation is 

true: 

)*(*** PDPDDSDY +=+=+= δ ,                 (1.1) 

where ** is the two-dimensional convolution operator and δ is the Dirac delta 

function in a matrix form. The task of scatter compensation is equivalent to 

estimating the unknown D from the measured Y. 

One solution is to de-convolve the Equation (1.1) [21, 29, 30]. If this is done 

through the Fourier Transform (FT), then  

D = FT −1( FT (Y )
FT (δ +P)

).             (1.2) 
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Or, statistical models can be formulated to solve the problem. In the past Poisson 

noise model was used, which assumed that both primary radiation and scatter 

radiation follow Poisson distributions. The maximum likelihood estimate (MLE) of 

D in two-dimensional projection radiography was obtained by borrowing the 

iterative equation originally derived for SPECT reconstruction [23], and it was 

combined with a Gibbs prior to form the maximum a posteriori (MAP) estimator of 

D [24]. Later a revision was made on the iterative equation [26]. Although promising, 

the Poisson noise model presents some problems: 1) the primary radiation and scatter 

radiation can not be directly modeled to follow Poisson distribution; 2) due to the 

polychromatic characteristic of x-ray beam, the radiation is not only related to the 

number of photons but to the energies of the photons as well. Therefore, in this thesis, 

a new explanation is given that justifies the Poisson noise model, and a new model is 

proposed, implemented and tested on the digital mammography data for the 

reduction of detected scatter radiation. 

1.4 Overview of the Thesis 

The thesis is organized as follows. In Chapter 2, the old Poisson noise model is 

briefly introduced. The Gaussian noise model is then proposed and its analytical EM 

algorithm is derived. Moreover, the Gibbs prior is incorporated into the algorithm to 

constrain the noise in the processed image. Chapter 3 presents the latent data 

augmentation scheme to justify the Poisson noise model, the image processing 
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results obtained from both the Poisson model and the Gaussian model, their 

comparison as well as the some further evaluation of the Gaussian noise model. The 

thesis is concluded in chapter 5. 
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Chapter 2 

Materials and Methods 

2.1 Scatter Kernel  

Towards the end of the previous chapter, we mentioned that scatter radiation is often 

modeled as the convolution of the primary radiation and a scatter kernel. The scatter 

kernel is also called scatter point spread function (PSF). Experiments [31, 32] and 

Monte-Carlo simulation models [33, 34] showed that the scatter kernel can be 

represented by a circularly symmetric exponential decay curve. The curve can be 

uniquely determined by two parameters: the magnitude (M) and full width at half 

maximum (FWHM). The two parameters are illustrated in Figure 2.1 (a). Figure 

2.1(b) shows the three-dimensional representation of such a scatter kernel with M of 

1 and FWHM of 80 pixels. Throughout the thesis, matrix P is used to represent the 

scatter kernel and it is known a priori.  
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Figure 2.1: A sample scatter kernel with magnitude of 1 and FWHM of 80 pixels. (a) 
One-dimensional profile of the kernel. (b) Its three-dimensional surface plot.  

2.2 Poisson Noise Model 

When put in a statistical framework, equation (1.1) becomes: 

PBBSDEYE **)()( +=+=  ,                               (2.1) 

where )(DEB = . If we use di, si, and yi (i=1,…,N; N is the total number of pixels in 

the image) to represent the elements in the matrices D, S and Y, then Poisson noise 

model is as follows: 

 

, ,                (2.2) 

 

where di and si (i=1,…,N) given B are mutually independent. The purpose of using 

))**((~|
))**((~|

)(~|

iiiii

ii

ii

PBbPoissonBsdy
PBPoissonBs

bPoissonBd

++=
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(B**P)i to represent ∑
=

N

j
ijj pb

1
 is two-folds: 1) (B**P)i is more straightforward than 

∑
=

N

j
ijj pb

1
 and 2) it is a reminder to us that two-dimensional convolution has a fast 

implementation in Fourier domain. We are interested in estimating B = {bi ; 

i=1,…,N}.  

In [26], a detailed derivation of MLE estimators of B through Expectation 

Maximization was provided. For conciseness, only the final iterative equation is 

shown here: 

k
nn

k

kn
k

n
k PBb

y
bb

)**( )()(
)()1(

+
⋅=+            (2.3) 

2.3 Gaussian Noise Model 

The radiation is intrinsically related to the number of photons via a conversion factor, 

which is a function of the photon energy. Even if an ideal monochromatic x-ray beam 

is available, i.e. all the photons from the x-ray source carry the same energy, the 

detected primary photons have the same energy but the detected scatter photons vary 

in their energy levels, thus causing different radiation or exposure conversion 

efficiency. This issue will be even more apparent when in practice a polychromatic 

x-ray beam as what’s shown in Figure 1.1 is usually used. In this case even the 

primary photons will take on different energy levels. The radiation or exposure will 

be related not only to the number of photons, but also to their individual energies and 
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the energy-dependent conversion factors. 

As will be discussed in the next chapter, our experimental data show that primary 

di and scatter radiation si can not be directly modeled as Poisson distribution. By 

contrast, the data approximately follow Gaussian distribution. Thus, a Gaussian noise 

model is proposed as follows: 

 

(2.4) 

 

where di, si, yi and bi have the same meaning as those in Poisson noise model (in 

block (2.2)). In addition, σi1
2 andσi2

2 represent the variance of the primary 

radiation and the variance of the scatter radiation in each pixel i. 

Due to the convolution operation, the estimation of B = {bi; i=1,…,N} directly 

from Y does not have a simple analytic form. The MLE of B is thus derived through 

the EM algorithm as follows.  

Treat the measured Y = {yi, i=1,…,N} as an incomplete dataset, and unobserved 

(D,S) = {(di,si), i=1,…,N} as a complete dataset. The di ’s and si ’s given B are 

mutually independent, therefore the complete data likelihood is: 
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Assuming {σi1
2, σi2

2 ; i=1,…,N} are known, we will get the complete data log 

likelihood by taking the logarithm on both sides, 
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The EM algorithm is comprised of two steps: one is the E-step where the 

expectation of the complete data log likelihood with respect to the present estimate 

of B is computed; and the other is the M-step where a new estimate of B is obtained 

which will maximize the computed expectation in the E-step. 

Firstly, let us consider the E-step: 
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Secondly, consider the M-step to find B(n+1) that will maximize Q(B|B(n)): 
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Solving the above equation for bk gives 
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Using B(n) to approximate B(n+1) in the right hand side, we get: 
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As a good estimate of the primary image is formed, 0)**( )()( ≈− n
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n sPB , then, 
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The same apparent form was obtained for Poisson noise model in [26]. But due to the 

different statistical models, the actual forms of dk
(n) are different and so do the 

iterative formula of bk. We will get the iterative formula of bk for the Gaussian noise 

model through the following theorem. 

Theorem 2.1 Let X ~ Gaussian(µx,σx
2), Y ~ Gaussian(µy,σy

2), independent. Let 

Z=X+Y be the third random variable. We know that Z follows a Gaussian 

distribution with mean of µz =(µx+µy) and variance of σz
2 =(σx

2+σy
2). It can be 

proved that the conditional distribution of X|X+Y i.e. X|Z is 
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Proof: According to the definition of conditional distribution: 
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Note that 
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Therefore, equation (2.12) becomes: 

)(
)()()|(

Zp
XpXZpZXp −

=  



17 

2

2

2

2

2

2

2
)(

2

2
)(

2

2

)(

2

2

1

2

1

2

1

z

z

x

x

y

y

z

z

x

x

y

y

e

ee

σ
µ

σ
µ

σ

µ

πσ

πσπσ
−

−

−
−

−
−

=  

)(2

)]([

2

22

2

22

2
2

2

2

2

2

2

2

1
z

yx

y
z

x
x

z

y

z

x Zx

z

yx

e σ

σσ

µ
σ
σµ

σ

σ

σ
σ

σ
σσ

π

−+−

−

=  

)),((~ 2

22

2

2

2

2

2

2

z

yx
y

z

x
x

z

y

z

x ZGaussian
σ

σσ
µ

σ
σ

µ
σ

σ

σ
σ

−+ .        

� 

Because the primary and scatter radiation of each pixel given B is independent of 

those of other pixels, ],|[],|[ )()()( n
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random variables in Theorem 2.1 to be X=dk, Y=sk and Z=yk, therefore, 
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Then equation (2.11) combines with equation (2.14) to give the following updating 

equation: 
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2.4 Incorporation of Gibbs Prior 

MLEM is known to have adverse effect on high frequency image noise. To 

overcome this, some constraints can be put on the noise level within the estimated B, 

or in other words, the prior information about B is provided. By Bayes’s Rule, 

)()|()|( BpBYpYBp ∝ ,            (2.17) 

where p(B) is the prior joint distribution of B={bi; i=1,…,N}, p(Y|B) is equal to the 

likelihood of B, and p(B|Y) is the posterior joint distribution of B given measured 

pixel values Y={yi; i=1,…,N}. 

We assume B is a Markov random process; it therefore follows a Gibbs 

distribution: 

β/)(1)( BUe
K

Bp −= ,             (2.18) 

where K is a normalizing factor which is independent of B, U(B) is the energy 

function, and β is a free parameter adjusting the relative weight of this prior on the 

maximum a posteriori (MAP) estimator of B. When β is approaching infinity, the 

MAP of B approaches MLE of B. 

The energy function is the sum of the potential function, i.e., 

∑
∈

=
Cc

c BVBU )()( ,             (2.19) 

where C is the set comprised of all cliques in the image. One clique is defined as a 

set of pixels where each one is a neighbor of all the others in the same clique. In the 

thesis, the Gibbs prior is defined over a 2nd –order neighborhood system (for each 
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pixel its north, south, east, west neighboring pixels plus its four diagonal neighboring 

pixels) with each clique comprising of two neighboring pixels. There are many forms 

of the potential function Vc(b). The one we pick up is adaptive to discontinuity 

[35-37]: 
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,          (2.20) 

where i and j are the neighboring pixels within the clique i~j. The bi and bj represent 

their intensities. δc is an adjustable parameter to regulate the cut-off frequency of the 

noise in the image. 

2.5 Image Acquisition 

A Siemens prototype digital mammography system (Mammomat Novation DR) with 

70 µm isotropic resolution was used for image acquisition. Uniform breast phantoms 

(CIRS, Inc., Norfolk, VA) were imaged with the x-ray beam generated by 28kVp and 

Mo/Mo target/filter combination. The phantoms are radiographically equivalent to a 

compressed breast of 4cm in thickness and 50% in glandular tissue density. At the 

center of the phantom there is a square dent, which mimics a high-contrast lesion in 

the digital mammography images. The images used in this thesis were acquired 

without an anti-scatter grid. Some of them have a beam stop (i.e., lead discs with 

3mm diameter) array superimposed on the breast phantoms. The beam stop method 

is a standard technique to measure the scatter radiation. Because lead discs absorb all 
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the primary radiation, only scatter radiation can arrive behind them. Figure 2.2 shows 

one such image. 

beam stops 

lesion 

background 

 

Figure 2.2: A sample breast phantom image taken with the beam stop array 
superimposed. The bright square mimics a high density lesion, based on which the 
contrast and CNR values are obtained. 

The image can then be fed into the algorithms for processing. The effect of 

processing is evaluated through various metrics, which will be discussed in the 

following subsection. 

2.6 Image Analysis Metrics 

The primary purpose of the algorithms is to estimate the expectation of primary 

radiation. Its effect is measured by the residual scatter fraction (RSF). At the same 
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time, it is desirable that the contrast-to-noise ratio (CNR) will be constrained or even 

improved after image processing. In addition, the effect of the algorithms on spatial 

resolution of the image has to be carefully monitored. In the following, we will give 

the definition of each of these metrics and how they are measured in this thesis. 

2.6.1 Residual Scatter Fraction 

Scatter fraction (SF) is defined as the ratio of the scatter radiation to the total 

radiation. Residual scatter fraction (RSF) is a quantity used to indicate how much of 

the scatter radiation remains after applying the scatter compensation algorithm. 

For the given imaging technique, two sets of images of the phantom were 

obtained. One is taken without a beam stop array, and the other is taken with the 

beam stop array. The signals behind beam stops (lead discs) are the scatter radiation. 

The total radiation, which is the sum of primary radiation and the scatter radiation, 

will reach the region without the beam stops. Thus the measured primary radiation 

(Pmeasured) is calculated by subtracting the mean radiation of a region-of-interest (ROI) 

behind a beam stop from the mean of the same ROI location without a beam stop. In 

the image processed for scatter compensation, the mean of total radiation (T) in the 

same ROI location (Testimated) is the sum of the residual scatter radiation and the 

primary radiation. Then 

estimated

measuredestimated

T
PT

RSF
−

= .           (2.21) 



22 

2.6.2 Contrast, Noise and CNR 

The contrast is defined as the ratio of the difference between the mean value of the 

lesion (Tlesion) and that of the background (Tbackground) to the mean of the background. 

That is, 

background

backgroundlesion

T
TT

Contrast
−

= .           (2.22) 

The noise is derived by dividing the standard deviation (STDbackground) to the 

mean (Tbackground) of the background: 

background

background

T
STD

Noise = .            (2.23) 

Contrast-to-noise ratio is the ratio of the contrast to the noise. i.e., 

background

backgroundlesion

STD
TT

Noise
ContrastCNR

−
== .         (2.24) 

2.6.3 Resolution 

Due to the nonlinearity of the algorithm, the metric like modulation transfer function 

(MTF) which is designed for a linear system can not be used here. Instead, a test bar 

comprised of alternating bright and dark lines with size corresponding to Nyquist 

frequency are embedded in the phantom image.  

The contrast improvement factor (CIF), defined as the ratio of the contrast after 

image processing to the initial contrast, is obtained for the test bar with various initial 
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contrast. If CIF is not less than 1, no resolution is lost. Otherwise, resolution is 

degraded. The minimal initial contrast that the test bar can take on with CIF no less 

than 1 is recorded as an indication of the effect of the image processing on 

resolution. 
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Chapter 3 

Results and Discussion 

3.1 Normality Check of the Data 

In our new model, primary, scatter and total radiations of each pixel in the projection 

mammography images are assumed to follow Gaussian distributions. To check 

whether Gaussian distribution is a good approximation to the real data, we analyze a 

uniform ROI outside of a beam stop (ROI1) and a uniform ROI behind a beam stop 

(ROI2) in an image acquired without an anti-scatter grid. 

ROI1 is a square region with 201x201 pixels, and its histogram is plotted in 

Figure 3.1. Visually, it follows approximately a Gaussian distribution. For further 

evaluation, the empirical quantile-quantile plot of the data with respect to a standard 

Gaussian distribution is drawn in Figure 3.2. The quantile of the data has a nice 

linear relationship with the quantile of the standard Gaussian distribution, indicating 

that the total radiation can be well represented by a Gaussian distribution.  

As stated before, the exposure of the area behind a beam stop is due to the 

scattered radiation from the neighboring regions. Figure 3.3 shows the profile of 

radiation along a line through the center of a beam stop. It has a nice flat profile for 

the scatter radiation. The circular ROI2 is selected which has a total number of 441 

pixels. Its histogram and quantile-quantile plot with respect to the standard Gaussian 
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distribution are shown in Figure 3.4 and Figure 3.5 respectively. Figure 3.5 shows 

that scatter radiation is also approximately Gaussian distribution.  

It is obvious that both total radiation shown in Figure 3.1 and scatter radiation 

shown in Figure 3.4 can not be directly modeled as Poisson distributions, since 1) the 

radiation does not take on discrete integer values only; and 2) the variance is much 

smaller than the mean, whereas a Poisson distribution has an equal variance and 

mean. Therefore, from the modeling perspective, the Poisson noise model (shown in 

block (2.2)) is problematic especially when a computation method other than EM 

algorithm is used. Luckily, if the model is modified by adding a latent data, then the 

iterative equation (equation (2.3)) derived from EM algorithm can be approximately 

true under certain assumptions. 
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Figure 3.1: The histogram of data from a uniform region-of-interest with total of 
201x201 pixels in an image acquired without an anti-scatter grid. The data is seen to 
be approximately Gaussian distribution. 
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Figure 3.2: The quantile-quantile plot of the same data as in Figure 3.1 with respect 
to the standard Gaussian distribution with mean of 0 and standard deviation of 1. The 
data fits well with the Gaussian distribution. 
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Figure 3.3: One-dimensional profile through the center of a beam stop (or lead 
disc). 
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Figure 3.4: The histogram of data from a circular region-of-interest with total of 441 
pixels behind a beam stop in an image acquired without an anti-scatter grid. The data 
is seen to be approximately Gaussian distribution. 
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Figure 3.5: The quantile-quantile plot of the same data as in Figure3.4 with respect to 
the standard Gaussian distribution with mean of 0 and standard deviation of 1. 
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Except an outlier (data value is about 1.7mR), the rest data fits well with the 
Gaussian distribution. 

3.2 Latent Data Augmentation Scheme for Poisson Model 

Assume the exposure or radiation is intrinsically proportional to the number of 

photons that produce the radiation through a constant C (E), which is dependent on 

the energies of photons E. For di, si and yi, the corresponding number of photons are 

ndi, nsi, and nyi. The expected number of photons for ndi is 

nbi. The following model is valid: 

 

            .                  (3.1) 

 

The updating equation for nbi is the same as equation (2.3): 
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which is the same updating equation for bk as equation (2.3). In other words, as long 
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as a single conversion constant rather than a set of energy dependent conversion 

constants C(E) exists between the radiation and the number of photons, The equation 

(2.3) or (3.3) derived from EM algorithm is scale-invariant regardless of the value of 

latent data C. 

3.3 Comparison between the Poisson and Gaussian Models 

Gaussian noise model is sounder than Poisson noise model for the direct modeling of 

radiations. Poisson model won’t give an accurate answer if computation methods 

which rely heavily on the accuracy of the model such as Gibbs sampling are adopted. 

However, when EM algorithm is used, the iterating equation obtained based on 

Poisson assumption can roughly be used to update the expectation of primary 

radiation. This is based on a simplification that a single conversion factor is valid for 

all radiation levels, which is not true in reality. By contrast, Gaussian noise model 

allows for the different conversion factors for different energies.  

For the uniform breast phantom, empirical value of Wi (i=1,…,N) in the 

Gaussian model as shown in equation (2.16) is 0.45. The empirical optimized scatter 

kernel P has FWHM=80pixels (i.e., 5.6mm) and M=0.52. The images are processed 

to obtain the MLE estimates from both models. Also the MAP estimates are obtained 

from both models using the same Gibbs prior with delta of 0.10.  

As a convention, in all the figures shown hereafter, the values for iteration 0 are 

the values measured on the original image without any processing.  
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Figure 3.6 shows the plots of RSF of MLE and MAP estimates from both models 

as a function of iteration number. All estimators successfully reduce the scatter 

radiation in the processed image such that RSF drops with iteration. In addition, they 

all asymptotically converge to the same value of 0.019 from the original scatter 

fraction of 0.354. Note that estimators based on Poisson noise model have a slightly 

faster convergence rate than those based on Gaussian noise model. For example, at 

iteration 2, the RSF of estimators from Poisson model already drops to 0.019, 

whereas that from Gaussian model is 0.047. 
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Figure 3.6: RSF vs. iteration plots for MLE and MAP estimator of b from both the 
Poisson noise model and the Gaussian noise model. The magnitude of scatter kernel 
is 0.52, which is same as the measured scatter-to-primary ratio (SPR). Therefore, 
RSF all drops close to zero, meaning almost complete scatter compensation. 

Figure 3.7 to Figure 3.9 illustrate how noise, contrast and CNR individually 
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change with iteration numbers. Let’s look at Figure 3.7 first. At iteration 16, the 

MLE estimators of both Poisson model and Gaussian model increase the noise from 

the original 0.021 to 0.031, which corresponds to a 47.6% of increase. The MAP 

estimator from Poisson model keeps the noise at a roughly same level as the original 

image, whereas the MAP estimator from Gaussian model decreases the noise by 

5.6%. 

Figure 3.8 show that all four estimators increase the contrast similarly. At 

iteration 16, they all increase the contrast by 26.8%. 

As shown in Figure 3.9, the initial CNR of the lesion is 47.28. After processing 

by both MLE methods, the CNR of the lesion drops to 39.13, which is equivalent to 

a 17.2% change. By contrast, the MAP estimators from Poisson and Gaussian 

models successfully increase CNR by 18.7% and 34.2% respectively.  

Table 3.1 shows the resolution results for the MAP estimates from the Poisson 

noise model and the Gaussian noise model. Both models can retain resolution for 

initial contrast greater than 2%. Poisson model retains the resolution slightly better 

than Gaussian model. It is not shown in Table 3.1 that MLE estimates from both 

models retain the resolution at all initial contrast levels. 

In summary, both MLE and MAP estimators work equally well in reducing the 

scatter radiation, while MAP estimators works better than their MLE counterparts in 

improving or constraining CNR without general loss of resolution. MAP estimator 

based on Gaussian model has a better performance in improving or constraining 

CNR than the MAP estimator based on Poisson model. 
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Figure 3.7: The noise vs. iteration plots for MLE and MAP estimator of b from both 
the Poisson noise model and the Gaussian noise model. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

iteration

co
n

tr
a

st

MLE - Poisson Model MLE - Gaussian Model
MAP - Poisson Model MAP - Gaussian Model

 



33 

Figure 3.8: The contrast noise vs. iteration plots for MLE and MAP estimator of b 
from both the Poisson noise model and the Gaussian noise model. 
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Figure 3.9: The CNR vs. iteration plots for MLE and MAP estimator of b from both 
the Poisson noise model and the Gaussian noise model. 

 

 Poisson Model Gaussian Model 

Minimum initial contrast that 

is retainable during processing

1.8% 2.0% 

Table 3.1: The resolution results for Poisson model and Gaussian model. The square 
wave function with Nyquist frequency is used as the test object. For various initial 
contrasts, the corresponding contrast-improvement-factor (CIF) is computed at 
iteration 16. CIF no less than 1 is used as the criterion for retaining the spatial 
resolution. What is reported here is the minimal initial contrast that has CIF no less 
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than 1. 

3.4 Further Evaluation of Gaussian Noise Model 

3.3.1 Effect of the Magnitude of the Scatter Kernel  

The Magnitude of the Scatter Kernel M, which is the same as the area under the 

curve, is used to model the scatter-to-primary ratio (SPR). Using the specified 

technique, the measured SPR for the phantom is 0.52. As is shown in Figure 3.10, 

when M is specified as 0.52, the RSF drops rapidly from the initial value to a value 

close to zero, meaning a satisfactory scatter compensation effect. When M is less 

than 0.52, the scatter radiation is partially compensated. Specifically, when M equals 

zero, no scatter compensation is made. When M is larger than 0.52, the scatter 

radiation is over-compensated, i.e., RSF is less than zero.  
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Figure 3.10: The RSF vs. iteration curves for the magnitude (M) of the scatter kernel 
ranging from 0.0 to 0.65. The measured SPR value using the beam stop technique is 
0.52. M of 0.0 represents no scatter compensation. M of 0.20 and 0.40 represents 
partial scatter compensation. And M of 0.65 overcompensate the scatter radiation in 
the image.  

Figure 3.11 -3.13 illustrate how different magnitude of the scatter kernel affects 

the noise, contrast and CNR respectively. Overall, these three metrics change 

monotonically with respect to the magnitude M. More specifically, when M gets 

larger, both the noise and the contrast become larger, while the CNR gets smaller.  

For all the M values investigated, the CNR at iteration 16 is larger than the 

original value. When M is equal to 0, the CNR improves by as large as 74.7%; even 

for M of 0.65, CNR improves by 24.3%.  

Table 3.2 gives the resolution results for the Gaussian model with various 

magnitude of scatter kernel. Note that for a magnitude of zero, there will always be 
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resolution loss. For the rest magnitude values, the resolution performances are 

similar. 

If the scatter compensation is the major concern, then the magnitude should be 

chosen as close to the actual SPR value as possible. The image processed in this 

setting will improve or constrain CNR without general loss of resolution. If more 

noise reduction or more CNR improvement is desired, then a smaller magnitude can 

be selected, at the expense of partial scatter compensation. The magnitude of zero, 

however, is not a good choice because it reduces the noise and increases the CNR at 

the expense of all spatial resolution as well as no scatter compensation. 
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Figure 3.11: The noise vs. iteration curves for M ranging from 0.0 to 0.65. At each M 
level, the percentage noise reduces asymptotically. The smaller the M value is, the 
more is the percentage noise reduced from the initial value of 0.021. 
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Figure 3.12: The contrast vs. iteration curves for M ranging from 0.0 to 0.65. At each 
magnitude level, the contrast increases asymptotically. The larger the magnitude is, 
the more is the contrast increased from the initial value of 0.97. 
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Figure 3.13: The CNR vs. iteration curves for M ranging from 0.0 to 0.65. At each 
magnitude level, the contrast increases asymptotically. The smaller the magnitude is, 
the more is the contrast increased. 

Magnitude 0.0 0.2 0.4 0.52 0.65 

Minimal 

initial contrast 

--- 2.7% 2.2% 2.0% 2.0% 

Table 3.2: The resolution results for the Gaussian noise model with different 
magnitude of scatter kernel. 

3.3.2 Effect of the Delta in the Gibbs Prior  

As mentioned in the subsection 2.4, the delta (δ) in the potential function of the 

Gibbs prior can be considered as a factor controlling cut off frequency in the 

processed image. The results shown in the previous sections are for δ=0.10. Now 

let’s consider δ of 0.2 and 0.05 to see how plots for the image quality metrics change. 

As expected, different δ values do not change the RSF and the contrast plots, so their 

plots are not shown. Figure 3.14, Figure 3.15 and Table 3.3 give the noise, CNR 

plots and the resolution result for delta of 0.2. Figure 3.16, Figure 3.17 and Table 3.4 

show the corresponding results for delta of 0.05. By comparing these results to 

Figure 3.7, Figure 3.9 and Table 3.1 for delta of 0.1, the trend emerges: the larger δ 

is, the more the image will be smoothed at the expense of slightly more resolution 

loss. It is understandable since more smoothed the final image is (i.e., less noise in 

the final image), more likely the details will lose. But still the final image retains a 
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reasonably good spatial resolution (for test bar of smallest possible size 

(corresponding to Nyquist frequency), all initial contrasts of 3% or larger is retained). 

When delta is 0.2, CNR in the MAP estimator based on the Gaussian model 

improves by as large as 120% without general loss of resolution. 
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Figure 3.14: The noise vs. iteration plots for MLE and MAP estimators based on 
delta of 0.2. The MAP estimators decrease the noise more than their counterparts 
based on delta=0.1 as shown in Figure 3.6. 
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 Figure 3.15: The CNR vs. iteration plots for MLE and MAP estimators based on 
delta of 0.2. The MAP estimators increase the CNR more than their counterparts 
based on delta=0.1 as shown in Figure 3.8. Also, the MAP estimator from Gaussian 
model improves CNR more than the one from Poisson model. 

 

 Poisson Model Gaussian Model 

Minimum initial contrast that 

is retainable during processing

3.0% 3.1% 

Table 3.3: The resolution results for Poisson model and Gaussian model when 
delta=0.2. 
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Figure 3.16: The noise vs. iteration plots for MLE and MAP estimators based on 
delta of 0.05. The MAP estimators decrease the noise less than their counterparts 
based on delta=0.1 as shown in Figure 3.6. 
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Figure 3.17: The CNR vs. iteration plots for MLE and MAP estimators based on 
delta of 0.05. In this case, the MAP estimators performs better than the MLE 
estimators in constraining CNR, but performs worse than their counterparts based on 
delta=0.1 as shown in Figure 3.8. But the MAP estimator from Gaussian model is 
still slightly better than the one from Poisson model. 

 Poisson Model Gaussian Model 

Minimum initial contrast that 

is retainable during processing

1.2% 1.6% 

Table 3.4: The resolution results for Poisson model and Gaussian model when 
delta=0.05.
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Chapter 4 

Conclusion 

By checking the experimental data, it was found that the Poisson noise model for 

scatter compensation in the literature [26] can not account for the radiations 

(including the primary, scatter and total radiations) directly. It will lead to an 

erroneous result for the estimation of the expected values of primary radiation if a 

computation method like Gibbs sampling is used. Luckily, due to the 

scaling-invariant property of EM algorithm with an approximation that a single 

factor rather than a set of energy dependent ones exists between the conversion of 

radiation and the corresponding number of photon, the updating equation derived 

from the old model can still be useful.  

 The histograms of radiation data indicate that they might be modeled by a 

different distribution like Gaussian. The quantile-quantile plots of the data with 

respect to the standard Gaussian distribution show that Gaussian noise model can be 

reasonably assumed. The EM algorithm based on this new model is derived and 

implemented. A MAP algorithm by incorporating a Gibbs prior is also implemented 

for better CNR in the processed images. 

The MLE and MAP estimators from the Gaussian noise model are compared 

with their counterparts based on the Poisson noise model. Results show that MAP 

estimators from both models have better CNR performance than MLE ones without a 
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significant loss of resolution. In addition, the MAP estimator from Gaussian model 

performs better than the one from Poisson model in CNR improvement. 

Further evaluation of MAP estimators from Gaussian model shows that both the 

magnitude of the scatter kernel and the delta in the Gibbs prior can be used to adjust 

the noise and CNR level in the processed images. The delta in the Gibbs prior acts as 

a major tuner of CNR without affecting RSF, whereas the magnitude of the scatter 

kernel acts as a fine tuner of CNR. Changing the magnitude of the scatter kernel will 

also affect the scatter compensation level. There is a general tradeoff between the 

CNR improvement and resolution reservation. Fortunately, for the largest CNR 

improvement (2.2 times the original CNR), the resolution is still reasonably well 

reserved. 
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ABSTRACT 
The underlying mechanism in projection radiography as well as in computed tomography (CT) is 
the accumulative attenuation of a pencil x-ray beam along a straight line. However, when a 
portion of photons is deviated from their original path by scattering, it is not valid to assume that 
these photons are the survival photons along the lines connecting the x-ray source and the 
individual locations where they are detected. Since these photons do not carry the correct spatial 
information, the final image is contaminated. Researchers are seeking techniques to reduce 
scattering, and hence, improve image quality, by scatter compensation. Previously, we presented 
a post-acquisition scatter compensation technique based on an underlying statistical model. We 
used the Poisson noise model, which assumed that the signals in the detector individually 
followed the Poisson process. Since most x-ray detectors are energy integrating rather than 
photon counting, the Poisson noise model can be improved by taking this property into account. 
In this study, we developed a Gaussian noise model by the matching-of-the-first-two-moments 
method. The Maximum Likelihood Estimator of the scatter-free image was derived via the 
expectation maximization (EM) technique. The maximum a posteriori estimate was also 
calculated. The Gaussian noise model was preliminarily evaluated on a full-field digital 
mammography system.  
 
KEYWORDS: Scatter Compensation, Scatter Reduction, Gaussian Noise Model, 
Expectation Maximization 
 
  
1.  INTRODUCTION 
 
Scattered radiation degrades medical images.  A recent Monte Carlo study showed that scattered 
radiation causes the drop of low-frequency modulation transfer function (MTF), changes the 
shape of MTF and adds considerable noise to projection images 1. In computed tomography (CT), 
scattered radiation leads to cupping artifacts on reconstructed sections. Therefore, removal of 
scattered radiation from projection images is essential for improved image quality, particularly 
for the latest advanced imaging radiography techniques including dedicated breast CT and breast 
tomosynthesis, which typically do not use anti-scatter grids. 
 
There are two categories of scatter compensation techniques: hardware based ones and numerical 
compensation methods. This study uses a numerical compensation method to develop a statistical 
scatter reduction technique. Previously, the exposure value of each pixel recorded by a detector 
was modeled by Poisson distribution 2. For flat-panel detectors, which belong to the type of 



 

 

energy integrating rather than photon counting, the underlying statistics is a compound Poisson 
process 3. It may be well approximated by Gaussian distribution. 
 
In this study, we will propose a Gaussian noise model for scatter reduction, and derive a 
maximum likelihood expectation maximization (MLE or MLEM) algorithm and a maximum a 
posteriori (MAP) algorithm. We will then apply the algorithms to radiographs acquired on FFDM 
for preliminary evaluation. 
 
2. MATERIALS AND METHODS 
 
2.1 Gaussian Noise Model  
 
In the chosen numerical scatter compensation scheme, the projection image is the sum of the 
primary radiation and scattered radiation. We have modeled scattered radiation as the two-
dimensional convolution of primary radiation with a scatter kernel, which is displayed as a double 
exponential function (Figure 1). 
 

 
Figure 1: Schematic of a scatter kernel with a radically exponential shape. It has two parameters: full 
width at half maximum and magnitude).  
 
 
By the matching-of-the-first-two-moments method, we approximated the energy-integrating 
signal by using a Gaussian distribution and created a scatter compensation model called the 
Gaussian noise model.  
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where di, si, and yi are pixel values at location i corresponding to primary, scattered and total 
radiation, respectively, bi is the expectation of di, and σi1

2 and σi2
2 are the variance of pixel values 

related to the primary radiation and scattered radiation, respectively.  
 
Using the expectation maximization (EM) algorithm shown in the appendix, the MLE of the ideal 
scatter-free image was derived with analytical form shown in Equation (2).  
 

)/(

)])**(([
2
2

2
1

2
1

)()()()1(

kkkk

k
nn

kkk
n

k
n

k

w

PBbywbb

σσσ +=

+−⋅+=+

,      (2) 

 
MLE estimate is known to increase high frequency image noise. To overcome this, some 
constraints can be put on the noise level within the estimated B, in other words, prior information 
about B can be provided. Thus, by Bayes’s Rule, 

)()|()|( BpBYpYBp ∝ ,         (3) 
 
where p(B|Y) is the posterior joint distribution of B, given the measured pixel values Y = {yi; 
i=1,…,N}, p(Y|B) is equal to the likelihood of B, and p(B) is the prior joint distribution of B = {bi; 
i=1,…,N}. 
 
We assumed B is a Markov random process. It therefore follows a Gibbs distribution: 
 

β/)(1)( BUe
K

Bp −= ,         (4) 

 
where K is a normalizing factor which is independent of B, U(B) is the energy function, and β is a 
free parameter adjusting the relative weight of this prior on the maximum a posteriori estimator 
of B. When β approaches infinity, the MAP of B approaches the MLE of B. 
 
The energy function is the sum of the potential function, i.e., 
 

∑
∈

=
Cc

c BVBU )()( ,          (5) 

 
where C is the set comprised of all cliques in the image. In this study, the Gibbs prior is defined 
over a second-order neighborhood system (for each pixel, its north, south, east, and west 
neighboring pixels plus its four diagonal neighboring pixels), with each clique comprised of two 
neighboring pixels. There are many forms of the potential function Vc (B). We chose one that is 
adaptive to discontinuity 4: 

Vc ({bi : b j}) =
(bi − b j )

2

δc
2 + (bi − b j )

2
,        (6) 

 
where i and j are the neighboring pixels within the clique i~j and bi and bj represent their 
respective intensities. δc is an adjustable parameter to regulate the cut-off frequency of the noise 
in the image.  
 
The MAP estimate of {bi} was calculated through the two-step maximization procedure proposed 
by Hebert and Leahy 5. 



 

 

2.2 Test Images 

Images were acquired with a Siemens prototype digital mammography system (Mammomat 
Novation DR; Siemens, Erlangen, Germany) with 70 µm isotropic resolution. Uniform breast 
phantoms (CIRS, Inc., Norfolk, VA) were imaged (28kVp), with a Mo/Mo target/filter 
combination. The phantoms were designed to be radiographically equivalent to a 4-cm-thick 
compressed breast with 50% glandular tissue density. A built-in square-shaped dent in the center 
of the phantom mimicked a high-contrast lesion in the digital mammography images. All images 
were acquired without an anti-scatter grid. For the purpose of scatter measurement, all images 
were repeated with an array of beam stops (lead discs 3 mm in diameter) superimposed on the 
breast phantoms. Because lead discs absorb all the primary radiation, only scatter radiation can be 
detected behind them (Figure 2). 
 

 
 
Figure 2: Radiograph of the tissue equivalent slabs. The arrays of black disks are the shadow of beam 
stops. The CNR values are obtained based on the bright square region of interest. 

Images were then be fed into the algorithms for processing. The results were then evaluated 
through various metrics described in the following subsection. 

2.3 Image Evaluation Metrics 

Three algorithms were employed to estimate the expected amount of primary radiation. Its effect 
was measured by the residual scatter fraction (RSF). At the same time, we anticipated that the 
contrast-to-noise ratio (CNR) would be constrained or even improved after image processing. We 
implemented a metric to estimate post-contrast CNR. Finally, we monitored with a test bar the 
effect of the algorithms on the spatial resolution of the images. 

2.3.1 Residual Scatter Fraction 

Scatter fraction (SF) is defined as the ratio of scatter radiation to total radiation. Residual scatter 
fraction (RSF) indicates how much of the scatter radiation remains after applying the scatter 
compensation algorithm. 
 
For our imaging technique, two sets of images of the phantom were obtained: one with, and one 
without, a beam stop array. The signals behind beam stops (lead discs) comprise the scatter 
radiation, while the total radiation, which is the sum of primary radiation and scatter radiation, 
will reach the region without beam stops. We calculated the measured primary radiation (Pmeasured) 
by subtracting the mean radiation of a region-of-interest (ROI) behind a beam stop from the mean 
of the same ROI location without a beam stop. In the image processed for scatter compensation, 



 

 

the mean of total radiation (T) in the same ROI location (Testimated) is the sum of the residual 
scatter radiation and the primary radiation. Thus, 

estimated

measuredestimated

T
PT

RSF
−

= .         (7) 

2.3.2 Contrast, Noise and CNR 

Contrast was defined as the ratio of the difference between the mean radiation value of the lesion 
(Tlesion) and the background (Tbackground) to the mean of the background, that is, 

background

backgroundlesion
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−

= .         (8) 

 
Noise was derived by dividing the standard deviation (STDbackground) by the mean of the 
background radiation (Tbackground): 
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CNR is the ratio of the contrast to the noise, i.e., 
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backgroundlesion
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Noise
ContrastCNR

−
== .        (10) 

2.3.3 Resolution 

Due to the nonlinearity of the resolution algorithm, we could not use metrics like MTF, which are 
designed for a linear system.  Instead, a test bar, comprised of alternating bright and dark lines 
with sizes corresponding to Nyquist frequencies with square wave function, was embedded in the 
phantom image.  
 
The contrast improvement factor (CIF), defined as the ratio of the contrast after image processing 
to the initial contrast, was obtained for the test bar with various initial contrast settings. A CIF of 
1 or greater was used as the criterion for retaining the spatial resolution. The minimal initial 
contrast that the test bar can allow with CIF of1 or greater was recorded as an indication of the 
effect of the image processing on resolution. For the various initial contrasts, the corresponding 
CIF was computed arbitrarily at iteration 16. We determined the minimal initial contrast value 
that has a CIF of 1 or greater. 
 
3. RESULTS 
 
3.1 Scatter Compensation Technique -- Tissue Equivalent Slabs 
 
Figure 3 and Table 1 give the RSF, CNR and resolution results for MLE and MAP algorithms 
based on a Poisson noise model and Gaussian noise model. Both MLE algorithms reduced RSF 
values to close to zero and decreased CNR values from the original unprocessed value of 47 to 
slightly below 40. The minimal contrast that is retainable during processing using our Poisson-
model-based MAP algorithm was 1.8%. The MAP algorithms were as equally effective as their 
MLE counterparts in removing scattered radiation from the radiograph; however, they increased 
the CNR values to 56 and 63, for the Poisson noise model and Gaussian model, respectively. The 



 

 

minimal contrast retainable using the Gaussian model based MAP algorithm was 2.0%, slightly 
higher than that of Poisson-model-based MAP (1.8%).  
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Figure 3: Plots of (a) residual scatter fraction and (b) contrast to noise ratio as the function of iteration 
numbers between MLE and MAP estimates of scatter free image {bi} based on Poisson and Gaussian noise 
models. While both techniques were effective at removing scattered radiation, the MAP based on the 
Gaussian noise model showed greater CNR improvement.  
 
 
Table 1: Resolution results of MAP estimates based on Poisson noise model and Gaussian noise model 
with the magnitude of scatter kernel of 0.52. The resolution results from the two models are close to each 
other.  

 Poisson Noise Model Gaussian Noise Model 
Minimum initial contrast that is 
retainable during processing 

1.8% 2.0% 

 
How the magnitude of the scatter kernel impacted the MAP algorithm based on the Gaussian 
noise model was also investigated. Figure 4(a) shows the RSF as a function of iteration for 
different magnitudes. When the magnitude is zero, there is no scatter reduction effect. As the 
magnitude increases, the steady-state RSF decreases. When the magnitude is larger than the 
measured value of 0.52, the scattered radiation is overcompensated such that RSF is less than 
zero. Figure 4(b) depicts CNR results for the same scatter kernel magnitudes. Overall, the larger 
the magnitude, the less CNR will increase. In the case of resolution, the smaller the magnitude, 
the lower the resolution (Table 2). For the magnitude of 0.2, the minimal contrast retainable 
during processing was 2.7%. For the magnitude of 0, where there was no scatter compensation, 
no contrast was retainable during processing. 
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Figure 4: Plots of (a) residual scatter fraction and (b) contrast to noise ratio as the function of iteration 
numbers were shown for various magnitudes of scatter kernel using MAP estimates of scatter free image 
{bi} based on the Gaussian noise model. A magnitude of 0.0 corresponds to no scatter removal, whereas a 
magnitude of 0.65 overcompensates the scattered radiation, resulting in negative residual scatter fraction 
values. At each magnitude level, the contrast increases asymptotically.. 

Table 2: Resolution results of the Gaussian noise model based MAP estimates with various magnitudes of 
scatter kernel. The larger the magnitude of scatter kernel, the sharper the processed image is. For the 
magnitude of zero, i.e., no scatter removal, the resolution is always degraded. 

Magnitude 0.0 0.2 0.4 0.52 0.65 
Minimal initial 
contrast 

--- 2.7% 2.2% 2.0% 2.0% 

 
3.2 Scatter Compensation Technique -- Anthropomorphic Phantom 
 
The scatter removal procedure reduced SF of the radiograph acquired without a grid from 45% to 
10%, the level that an anti-scatter grid achieves (Figure 5, Table 3). At the same time, the 
procedure improved the CNR to around twice the value on the image acquired with a grid. 
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Figure 5: Radiographs of the breast anthropomorphic phantom, (a) with an anti-scatter grid, (b) without 
an anti-scatter grid, and (c) without an anti-scatter grid and with scatter reduction. 
 
Table 3: Corresponding residual scatter fraction and contrast to noise ratio results for the three images 
shown in Figure 5.  
 With grid w/o grid w/o grid; scatter reduction 
RSF 11% 45% 10% 
CNR 7.04 6.99 15.29 
 
 
4. DISCUSSION 
 
In this study, both MLE and MAP estimates of the scatter free image were derived based on a 
novel Gaussian noise model for energy-integrating detectors.  The preliminary results were 
obtained on the two types of phantoms (tissue equivalent slabs and a breast anthropomorphic 
phantom) obtained on a full-field digital mammography system. Both MLE and MAP techniques 
were effective in removing the scattered radiation, though MAP outperformed MLE in CNR. For 
the specific phantom and imaging condition, the MAP of the Gaussian noise model outperformed 
the MAP of the Poisson noise model. 
 
The next phase of this research will include a comprehensive evaluation of the scatter reduction 
technique on images acquired on a FFDM system. Also the technique can be applied on dedicated 
breast CT data for scatter reduction. 
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6. APPENDIX 
 
Derivation of MLE Algorithm based on Gaussian Noise Model 
 
Due to the convolution operation, the estimation of B = {bi; i=1…N} directly from Y does not 
have a simple analytic form. The MLE of B is thus derived through the EM algorithm as follows.  
 
Treat the measured Y = {yi, i=1,…,N} as an incomplete dataset, and unobserved (D,S) = {(di,si), 
i=1,…,N} as a complete dataset. The di ’s and si ’s given B are mutually independent, therefore 
the complete data likelihood is 
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Assuming {σi1
2, σi2

2 ; i=1,…,N} are known, we can obtain the complete data log likelihood by 
taking the logarithm on both sides, 
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The EM algorithm is comprised of two steps: one, the E-step, where the expectation of the 
complete data log likelihood with respect to the present estimate of B is computed, and two, the 
M-step, where a new estimate of B is obtained which will maximize the computed expectation in 
the E-step. 
 
First, employ the E-step: 
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Second, the M-step to find B(n+1) that will maximize Q(B|B(n)): 
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Solving the above equation for bk gives 
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Using B(n) to approximate B(n+1) in the right-hand side yields 
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As a good estimate of the primary image is formed, 0)**( )()( ≈− n
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The same apparent form was obtained for Poisson noise model in Reference 2. But due to the 
different statistical models, the actual forms of dk

(n) are different and so is the iterative formula for 
bk. 
 
Equation (A7) combines with equation (A4) to give the following updated equation: 
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(n+1) = bk
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Dedicated breast computed tomography �CT� imaging possesses the potential for improved lesion
detection over conventional mammograms, especially for women with dense breasts. The breast CT
images are acquired with a glandular dose comparable to that of standard two-view mammography
for a single breast. Due to dose constraints, the reconstructed volume has a non-negligible quantum
noise when thin section CT slices are visualized. It is thus desirable to reduce noise in the recon-
structed breast volume without loss of spatial resolution. In this study, partial diffusion equation
�PDE� based denoising techniques specifically for breast CT were applied at different steps along
the reconstruction process and it was found that denoising performed better when applied to the
projection data rather than reconstructed data. Simulation results from the contrast detail phantom
show that the PDE technique outperforms Wiener denoising as well as adaptive trimmed mean
filter. The PDE technique increases its performance advantage relative to Wiener techniques when
the photon fluence is reduced. With the PDE technique, the sensitivity for lesion detection using the
contrast detail phantom drops by less than 7% when the dose is cut down to 40% of the two-view
mammography. For subjective evaluation, the PDE technique was applied to two human subject
breast data sets acquired on a prototype breast CT system. The denoised images had appealing
visual characteristics with much lower noise levels and improved tissue textures while maintaining
sharpness of the original reconstructed volume. © 2008 American Association of Physicists in
Medicine. �DOI: 10.1118/1.2903436�

Key words: breast imaging, breast CT, PDE, volume noise removal
I. INTRODUCTION

The most common cancer type that affects women globally
other than skin cancer is breast cancer.1 Moreover, breast
cancer is a leading cause of cancer-related women mortality,
secondary only to lung cancer. It is estimated that the disease
will kill about 40 480 U.S. women in 2008.1 Although mam-
mography is the standard clinical screening technique2,3 for
breast imaging, superimposition of normal anatomical struc-

tures may potentially obscure a breast lesion. The situation

1950 Med. Phys. 35 „5…, May 2008 0094-2405/2008/35„5…/
gets even worse for women with dense breasts,4 which have
more anatomical noise in the projection image. Researchers
are developing alternative x-ray breast imaging techniques
that may overcome the limitations of mammography, includ-
ing three-dimensional imaging techniques such as breast
tomosynthesis5,6 and dedicated breast computer tomography
�CT�.7–12

Not long after the CT technique was invented in 1972, a
group of researchers showed that using a whole body scanner

for breast CT imaging would require a high patient dose to
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achieve adequate image quality.13 With the advent of high-
resolution flat-panel detectors at the end of the 1990s, breast
CT became an active area of research. In particular, a 2001
article7 showed that dedicated breast CT could achieve qual-
ity breast images with dose levels comparable to two-view
mammography for the same breast. Other studies have since
investigated many aspects of dedicated breast CT.8–12,14–18

Preliminary human subject data acquired on our first pro-
totype breast CT system19 provide exciting new information
of the breast that was not available in the past. However,
because the relatively low total dose must be split among a
large number of projection views �around 500�, reconstructed
breast CT thin sections contain considerable quantum noise.
Thus, it is desirable to reduce noise levels in the recon-
structed volume to improve the conspicuity of breast lesions
while also retaining spatial resolution. Alternatively, by ap-
plying denoising techniques, dose may be reduced while
maintaining the image quality.

For low dose CT, some general-purpose sinogram
smoothing techniques based on either penalized likelihood20

or penalized weighted least squares21 were developed. These
techniques can be potentially applied on dedicated breast CT
data sets. Zhong et al.22 developed a wavelet-based tech-
nique and applied it on phantom breast CT data. Their results
showed that with denoising, dose could be potentially re-
duced by up to 60%.

The partial diffusion equation �PDE� based technique23,24

is another denoising method which is effective not only in
removing noise but also in preserving details. Although com-
putationally intensive, this iterative method can provide
more freedom in choosing the desired denoising effect. In
this study, we describe several variants of the PDE based
denoising technique applicable to different steps along the
reconstruction process of breast CT and evaluate it both on
simulated and empirically collected human subject data sets.

The image quality of PDE denoised images was compared
against that of a Wiener filtering technique as well as two-
dimensional �2D� adaptive trimmed mean �ATM� filters.
Quantitative comparisons were made using simulated data at
various exposure levels, while qualitative comparisons were
made using dedicated breast CT scan data from two human
subjects.

II. MATERIALS AND METHODS

II.A. Dedicated breast CT system and human subject
data sets

As is illustrated in Fig. 1, dedicated breast CT systems are
typically designed as follows: a patient lies prone on a lead-
shielded table with one breast hanging through a hole on the
table in the pendant geometry. The x-ray tube and the flat-
panel detector rotate in the horizontal plane underneath the
table. This setup is different from a conventional CT system,
where the x-ray tube and detector rotate around the torso of a
patient �axial scanning�. Since only the breast to be imaged is
exposed to the x-ray beam, the dose to the patient can be

7
greatly reduced. A pilot study showed that this type of dedi-
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cated breast CT system is able to achieve a satisfactory im-
age quality with dose levels comparable to standard two-
view mammography for the same breast.

Using the above system design, a custom-designed breast
CT system was fabricated at the University of California
Davis Medical Center and is currently accruing patient im-
ages. The x-ray tube has a Comet beryllium-windowed,
water-cooled tungsten anode and a nominal focal spot with
the size of 0.4 mm�0.4 mm. A Pantak high frequency
x-ray generator drives the tube with the voltage ranging from
10 to 160 kV. The CsI-based flat-panel detector �Varian, Pax-
Scan 4030CB� has a field of view of 40 cm�30 cm. Using
30 frames per second and 2�2 pixel binning mode, the de-
tector generates the images each with matrix size of 1024
�768 and pixel dimension of 0.388 mm�0.388 mm. A
Kollmorgen servo motor was employed to drive the rotation
of the tube-detector gantry as well as encode the angular
information. The source-to-isocenter distance is 46.9 cm and
the source-to-detector distance is 88.4 cm.

For the two human subject data sets presented in this ar-
ticle, the projection images were acquired under 80 kVp us-
ing a circular orbit. The mAs values were chosen for each
subject such that the mean glandular dose using breast CT
was equal to two-view mammography. Each subject is
scanned within 17 seconds to get a total of 500 projection
images that span slightly over 360 degrees. After dead pixel
and flat field corrections, each data set is ready for tomogra-
phic reconstruction.

II.B. Simulated breast CT data sets

In this study, simulated breast CT data sets were also gen-
erated to aid the analysis. The computer-generated breast is a
hemisphere with radius of 7 cm. It has homogeneous breast
tissue with a uniform linear attenuation coefficient of
0.17 cm−1 and is surrounded by 1 mm thick skin25 with a
linear attenuation coefficient of 0.3 cm−1. Either a contrast
detail phantom or a single high-contrast lesion was simulated
at the center of the breast. The parameters of the contrast
detail phantom are: for each 4 by 4 lesion array, sizes vary
vertically �6, 5, 4, and 3 mm�; contrasts of the lesions are
15%, 10%, 5%, and 3% from left to right. Five of these

FIG. 1. Illustration of a dedicated breast CT system. The x-ray tube and
flat-panel detector rotate together around the breast, which is the only region
to be illuminated.
arrays were embedded in the shape of a plus sign to cover
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multiple areas in the central coronal slice in order to detect
any regional variations in image quality. Perfect detection
would correspond to five sets of 16 lesions or 80 in total.
This simulated breast was scanned virtually by a monochro-
matic x-ray cone beam with infinitely small focal spot and
ideal flat-panel detector with 100% detective quantum effi-
ciency. The geometric parameters are the same as the physi-
cal breast CT scanner described in the previous subsection.

For each 2D projection image, an analytical line integral
image was first obtained based on the aforementioned virtual
dedicated breast CT scanning. A noisy raw image was gen-
erated according to the measurement model.26 The model
takes into account both photon quantum noise and electronic
readout noise. It has the following form:

Yi = GiĒ · Poisson�I0e−li� + Gaussian�0,�2� , �1�

where Gi is the gain factor of the imaging system, Ē is the
mean energy level of the polychromatic x-ray beam, and the
Gaussian term is for the electronic noise. In our simulation

we chose Gi=0.0035 /keV, Ē=40 keV, and �2=10. The val-
ues of Gi and �2 were referred to those used in Ref. 26.

Two I0 values are used. The exposure level affects the
noise content of line integral at a fixed location. By varying
the exposure levels and plotting the line integrals against
those of human subject data, it is found that I0=2.5e4 gives
a comparable noise level for the same line integral values.
Another exposure level is I0=1e4, which is 40% of the first
exposure level.

II.C. Tomographic reconstruction

Before reconstruction, the raw projection images undergo
a preprocessing step. The raw projection image is converted
into the line integral via the logarithm operation. On each
raw projection image, a region of interest �ROI� is identified
which is outside the breast silhouette, and the pixel value
without attenuation I0 is approximated by the mean pixel
value within the ROI. Then the line integral image is ob-
tained by lij =log�I0 / Iij�, where Iij is the pixel value at �i , j�
position.

Since the data sets have high angular sampling rate, the
computationally efficient filtered backprojection27 �FBP� al-
gorithm was chosen for reconstruction. The Feldkamp type
FBP for cone-beam geometry was custom written and a
Shepp–Logan filter was used.

II.D. Denoising techniques

Along the reconstruction process, there are four possible
steps where a denoising technique can be applied, as illus-
trated in Fig. 2. However, applying a denoising technique in
step 1 will not be very effective due to the nonlinear opera-
tion of the preprocessing step. Only steps 2, 3, and 4 are
considered. All together five different denoising techniques
were implemented for this study. The first three are variants
of the partial diffusion equation based denoising technique
that were developed for each step. First, the standard 2D

PDE technique was applied at step 3. Second, a spatially
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variant version of the 2D PDE denoted as PDEtomo is used at
step 2. Third, the three-dimensional PDE is used at step 4.
The last two techniques are Wiener filter and ATM filter,
which are also applied to step 2, and which are compared to
the PDEtomo technique.

II.D.1. PDE2D

An image is processed by a nonlinear PDE technique
through

�I

�t
= � · �p����G� � I��� � I� , �2�

where �I is the gradient of the image I and �2I=� · ��I� is
the Laplace operation on I over the spatial variables.28 The
function of p�.� is called the diffusivity function, a function
of the norm of the gradients in the image ��I�. It is used to
regulate the local smoothness. In the presence of noise, the
gradients can be unbounded. To overcome this problem, a
Gaussian kernel G� with the standard deviation of � is ap-
plied to the image before gradients are computed as Catte et
al.29 suggested. A nonlinear PDE can reduce noise while pre-
serving spatial resolution in the image.

In this study, we chose a diffusivity function proposed by
Perona and Malik23

p�d� = e−d2/�0
2
, �3�

where �0 is a user-specified parameter. When the image gra-
dient norm is very large at a location region, the diffusivity
will be very small, and thus the local image values will be
preserved within a small time period whereas another more
uniform region will be smoothed out at the same time. The
parameter �0 acts like a cutoff value; image regions with
gradient norm below �0 will have more noise removed while
regions with a higher gradient norm will stay sharp.

The diffusion equation can be discretized by the finite
difference approach using the first-order neighborhood sys-
tem. Each pixel has four neighbors: the north, south, west,
and east neighbor pixels. Assuming �x=�y=1 in the two-

FIG. 2. Illustration of possible steps where image-denoising module may be
applied with respect to reconstruction module for dedicated breast CT data.
In this study, the denoising techniques are applied at steps 2–4.
dimensional case, the discretized version of Eq. �2� is
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I�i,j�
�t+1� − I�i,j�

�t�

�t
= p�i−1,j� · ��i−1,j�I

�t� + p�i+1,j� · ��i+1,j�I
�t�

+ p�i,j−1� · ��i,j−1�I
�t� + p�i,j+1� · ��i,j+1�I

�t�, �4�

where �t� and �t+1� represent the iteration step t and t+1,
respectively; �t is the discretized time step; p�.,.�’s are diffu-
sivity function values at the neighboring pixels of location
�i , j�; and ��.,.�I is a notation for the difference between I�.,.�
and I�i,j� itself. The parameters of PDE2D are �t, �, �, and the
number of iterations �denoted by iter_num�.

II.D.2. PDEtomo

In the breast CT line integral images, noise is larger to-
ward the chest wall. When the photon fluence is reduced, the
phenomenon becomes even more obvious. A line profile is
shown in Fig. 3 to help illustrate this point. It can be ex-
plained theoretically. Again, a simplifying assumption of
monochromatic beam is used. If

Iij � Poisson��ij� ,

lij = log
I0

Iij
= log I0 − log Iij� , �5�

where �ij is the expected number of photons arriving at lo-
cation �i , j� of the detector, then the variance of the line
integral lij can be approximated by the delta method30 using
the second-order Taylor expansion

var�lij� = var�log Iij� 	 var�Iij� · ��log Iij���2

	 �ij ·
1

Iij
2 	

1

Iij
. �6�

This formalism can be integrated into the PDE denoising
technique by adapting the parameter � in the diffusivity func-

FIG. 3. One-dimensional line integral profiles across the breast on a projec-
tion image. The dashed and continuous plots correspond to noise free case
and the case with I0=2.0e3, respectively. The variance of line integral is
larger at the center of breast region and gets lower toward the periphery.
tion spatially as
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�ij = k · 
var�lij� = �0 ·
 1

1

M
�

c�N�i,j�
elc

, �7�

where k is a constant, M is equal to 4, and N�i , j� is the four
closest neighbors around pixel �i , j�.

The resultant PDE denoising technique is denoted PDE
for tomography/tomosynthesis �PDEtomo�. The parameters to
be considered are �t, �, �0, and iter_num.

II.D.3. PDE3Dpost

When the PDE denoising is applied on the reconstructed
volume instead of the line integral data, its neighborhood
system expands to six neighbors along x, y, and z directions.
Otherwise this variant of the algorithm, denoted as
PDE3Dpost, is implemented in the same way as PDE2D. For
example, the choice of the parameter in diffusivity function
is not spatially adaptive, i.e.,

�ij = �0. �8�

II.D.4. Wiener filter

A Wiener filter is used at step 2 for comparison against
the PDE technique investigated in this study. Both tech-
niques are spatially adaptive filters. However, the Wiener
filter is a linear technique whereas the PDE technique is non-
linear.

For each pixel, its mean ��� and variance ��2� around a
local neighborhood is estimated. Then the Wiener filter up-
dates l�x ,y� to the new ln�x ,y� through

ln�x,y� = � +
�2 + �2

�2 �l�x,y� − �� , �9�

where �2 is the average of �2 values.
The variable parameter in the Wiener filter is the size of

the neighborhood. In this study, 3�3, 5�5, and 7�7 ker-
nels are considered.

II.D.5. ATM filter

Like the PDE filters described in Secs. II D 1 to II D 3,
the ATM filter is also a nonlinear spatially adaptive tech-
nique. The one-dimensional �1D� ATM filter presented in
Ref. 26 is expanded to 2D. The window size, M, and the
trimming parameter, �, are adjusted according to the local
pixel value

M =
2	�

2� + 	x
,

� =
�mx

�
, �10�

where x is pixel value on raw projections, and beta and
lambda are two parameters of the ATM filter. When x is zero,

the window size M obtains its maximal value at beta.
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II.E. Quantitative image evaluation in simulation
studies

For parameter choice and step comparison using the simu-
lated breast with contrast detail phantoms, the figure of merit
was the number of detectible lesions, which was counted
automatically by thresholding each lesion’s CNR as well as
the normalized cross correlation �NCC� of each lesion with
its ideal version on the reconstructed coronal slices of the
simulated breast.
variants applied at various steps in the reconstruction pro-
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The CNR is calculated as the ratio of contrast to percent-
age noise.31 The contrast of the lesion is defined as the signal
difference relative to the mean of background, while the per-
centage noise is the standard deviation of the background
relative to its mean. Since both the contrast and noise are
relative to the mean of background, the CNR is reduced to
the ratio between the signal difference to the standard devia-
tion of the background.

The NCC is a mathematical operation defined as32
NCC�s,t� =
�x �y

�f�x,y� − f̄�x,y���w�x − s,y − t� − w̄�

���x �y
�f�x,y� − f̄�x,y��2� · ��x �y

�w�x − s,y − t� − w̄�2�
1/2
, �11�
where �x ,y� and �s , t� are spatial position indices, f and w are

an image and a template, respectively, and f̄ and w̄ are their
average values over the space.

The threshold was ad hoc set to 1.0 for CNR and 0.28 for
NCC.

To compare quantitatively among various denoising tech-
niques, in addition to the above evaluation on the breast with
contrast detail phantoms, we also derived plots of percentage
noise against resolution.

In order to measure spatial resolution31 which is a difficult
challenge in these nonlinear image processing algorithms, a
high intensity sphere was simulated within the breast, pro-
jected, and target reconstructed �with an in-plane pixel di-
mension of 0.2 mm� around the high-intensity sphere. For
each specific denoising technique, first the edges of the cir-
cular disk within a reconstructed slice were averaged radi-
ally. Then, the averaged edge response outside the high-
contrast sphere was fitted to a function, which was the
convolution of the original edge response without any de-
noising procedure and a parametric Gaussian function with
standard deviation of �. The best fit Gaussian function was
found with the parameter of �best, and its full width at half
maximum, which is equal to 2.35�best, was used as the mea-
sure of the spatial resolution related to a specific denoising
technique. Since the spatial resolution was measured from
the indirect Gaussian function fitting method instead of di-
rectly measuring from the reconstructed slice, it was reason-
able to get values less than a pixel size.

III. RESULTS

III.A. Simulation results

III.A.1. Step comparison

With more iteration steps, more noise will also be re-
moved by using PDE based technique, with the tradeoff of
degrading resolution. So there is no global optimization of
parameters per se. To compare objectively between the PDE
cess, the parameters are chosen such that same amount of
noise will be removed from the reconstructed volumes of
breasts. In other words, if a uniform region in the simulated
breast without lesions is selected as the background, its noise
level is matched among PDE variants. The number of de-
tectible lesions from the contrast detail phantom is used as
the figure of merit to select from a subset of parameters that
remove the same amount of background noise in the breast.
For the comparable noise removal, a matched group is
PDEtomo with iter_num=10, �t=0.1, �=1 and �0=0.03,

FIG. 4. Step comparison at I0=2.5e4. �a� is a coronal slice of simulated
breast with contrast detail phantoms, and �b� shows the same slice with
added noise to the projection images. After noise removal, �d� PDEtomo

applied prior to reconstruction generates better images than �c� PDE3Dpost
after reconstruction.
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PDE3Dpost with iter_num=4, �t=0.2, �=0.15, and �0=0.07,
and PDE2D with iter_num=10, �t=0.1, �=5, and �0=0.09.

Figure 4 shows the reconstructed thin sections of �a� the
ideal contrast detail phantom, �b� the image after adding
noise corresponding to exposure I0=2.5e4, �c� the image de-
noised by the PDE3Dpost algorithm applied at step 4, and �d�
the same data denoised by the PDEtomo algorithm applied at
step 2. The reconstructed slice thickness was 0.5 mm and
within-plane pixel dimension was 0.4 mm. Figure 5 shows
the corresponding results at I0=1.0e4. The noise level is
higher in Fig. 5�b� as compared to Fig. 4�b�. The sensitivity
defined as the ratio of the numbers of detectible lesions to the
total number of 80 for each case is shown in Table I. While
the CNR and NCC criteria do not give the same number,
they provide the same trend: PDEtomo processed volumes
�step 2� have more detectible lesions than PDE3Dpost pro-
cessed ones �step 4�.

TABLE I. Comparison between denoising applied to reconstruction steps 2 to
4, using CNR and NCC as the criteria. Denoising at step 2 before recon-
struction consistently provides a higher number of detectible lesions or a
higher ratio of number of detectible lesions to total number of lesions �80 in
this study�, as does increasing the exposure level.

Step 2: PDEtomo

�%�
Step 3: PDE2D

�%�
Step 4: PDE3Dpost

�%�

I0=1e4 CNR 55.0 53.8 45.0
NCC 53.8 53.8 42.5

I0=2.5e4 CNR 61.3 58.8 48.8
NCC 57.5 53.8 45.0

FIG. 5. Step comparison at I0=1.0e4. �b� is noisier than Fig. 4�b�. As in Fig.
4: �d� PDEtomo applied at step 2 is better than �c� PDE3Dpost applied at step 4.
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In addition, both Figs. 4 and 5 show that volumes de-
noised at step 2 have better visual appearance than those
denoised at step 4.

Applying the PDE technique in-between filtering and
backprojection steps �step 3� results in reconstructed slices
visually similar to Figs. 4�d� and 5�d�. However, they have
lower sensitivity for detection than PDEtomo at step 2 but
higher than PDE3Dpost at step 4, as is shown in Table I.

III.A.2. Comparison between denoising techniques

Hereafter, denoising techniques are all applied at step 2.
Again, the number of detectible lesions from the contrast
detail phantom is used as the figure of merit to select the
parameters of ATM filter from within all combinations of
beta value ranging from 1 to 20 and lambda from 0.5e4 to
7.0e4 with 0.5e4 as the incremental step. The optimized
ATM filter has a beta value of 7 and lambda of 2.0e4.

FIG. 6. Noise-resolution plot for PDEtomo, ATM, and Wiener filters at I0

=2.5e4. For a high contrast test object, PDEtomo and ATM have a lower
noise level and higher resolution than Wiener filtering. ATM is the best
among the three based on the noise-resolution plot.

FIG. 7. One-dimensional profiles of the reconstruction through the center of
the high contrast object using ATM filter and PDEtomo. It is shown that by
using ATM filter there is a cupping effect at the lesion center, which is
absent from PDEtomo and Wiener processed ones. The rectangle is where the

noise level is computed for noise-resolution plot.
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The noise-resolution result at the exposure level of 2.5e4
is given in Fig. 6. It is based on a high-contrast large-size
sphere imbedded into the simulated breast. The noise and
resolution values are plotted for PDEtomo, Wiener, and ATM
techniques. The Wiener filter is applied using a 3�3 kernel.
PDEtomo processing resulted in lower noise than Wiener fil-
tering �4.7% and 12%, respectively�. At the same time,
PDEtomo also provided better resolution than Wiener filtering
�0.22 versus 0.29 mm, respectively�. The ATM filter pro-
vided the same 0.22 mm resolution as PDEtomo, while reduc-
ing noise to 2.0%. However, the ATM reconstructed image
shows a cupping artifact, which is absent in the PDEtomo

processed one. The cupping artifact is evident in the 1D pro-
file through the center of the high-contrast object shown in
Fig. 7. Note that the rectangle represents the location where
the noise level is measured and does not capture the nonuni-
formity problem.

To get the number of detectible lesions from the contrast
detail phantom or sensitivity comparison, the results from the
Wiener 3�3 kernel and 5�5 kernel at exposure level of
1.0e4 were interpolated to match the background noise with
PDEtomo. And the background noise level matched ATM filter
has parameters of beta of 7 and lambda=1.8e4. The sensitiv-
ity results are shown in Table II. PDEtomo gives the largest
number of detectible lesions for the contrast detail phantom,
followed by ATM and then the Wiener filter, according to the
CNR criterion.

TABLE II. Technique comparison using contrast detail phantoms. PDEtomo is
the best among three denoising techniques for this task. All images were
acquired with the lower exposure of I0=1.0e4 counts.

Wiener
�%�

ATM
�%�

PDEtomo

�%�

CNR 48.8 51.3 55.0
NCC 42.5 37.5 53.8

FIG. 8. Human subject result No. 1. Top row shows original reconstruction,

denoising, resulting in remarkably reduced noise levels.
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III.B. Human subject results

When applied to the clinical data sets, the parameters of
PDEtomo used are: �t=0.1, �=1, �0=0.03, and iter_num
=10.

Figures 8 and 9 show the coronal reconstructed slices
from two human subjects. By visual comparison, the
PDEtomo technique �bottom row� reduces the noise consider-
ably while maintaining the resolution of the original recon-
struction �top row�.

IV. DISCUSSION

Dedicated breast CT imaging is an exciting new modality
that possesses the potential of improving breast cancer diag-
nosis over conventional mammography. Some preliminary
studies19,33 show that satisfactory images can be acquired
using the same dose as standard two-view mammography.
When this dose is divided among the potentially hundreds of
individual projection images comprising each scan, the high
level of quantum noise in the projection data will pass
through to the final reconstructed volume. This motivates the
development of denoising tools to effectively remove the
noise, improve lesion conspicuity, and maintain image reso-
lution.

One important consideration of noise removal in breast
CT is where to apply a denoising technique. In this study,
five separate techniques were developed for three different
steps in the reconstruction process. By optimizing each of
them independently within the subsets that result in the same
amount of noise removal from the breast, it was found that
denoising before reconstruction provides better images than
after reconstruction. This is understandable, since some fine
details in the volumes can be overwhelmed by the abundant
noise during the reconstruction step. Applying denoising af-
terwards cannot recover that information. By contrast, if a
denoising technique is applied before reconstruction, it is
possible for the fine details to be preserved.

nal slices from normal breast. Bottom row shows same slices with PDEtomo
coro
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Both the quantitative results in the simulation study and
the visual inspection in human subject data study showed the
promise of the PDEtomo technique. In the simulation study, it
was compared with ATM as well as Wiener techniques, two
adaptive denoising techniques. The noise versus resolution
results show that PDEtomo denoising can achieve lower noise
and higher resolution in the reconstructed volume than the
Wiener technique. ATM denoising did yield even lower
noise, but with cupping artifacts at the center of the breast. In
comparison to ATM filtering, PDEtomo provided the same
high resolution but the noise levels all over the breast region
were more uniform. In addition, the detectability of low con-
trast lesions was assessed with the use of contrast detail
phantoms. PDEtomo once again proved to be the best overall
performer, consistently providing the best sensitivity for le-
sion detection compared to other techniques. The advantage
of PDEtomo over other techniques in terms of decreased noise
level and improved noise uniformity are both more evident
when the dose was lowered to 40% of the original value,
which suggests that the PDEtomo technique holds more prom-
ise for processing data sets acquired at lower dose levels.
With PDEtomo, the sensitivity for lesion detection using the
contrast detail phantom drops by less than 7% when the dose
is cutoff more than half that of the two-view mammography.

Even though the theoretical description of the noise vari-
ance in the projection image due to the quantum noise and
the logarithm operation is more approximate for the empiri-
cal data, the PDEtomo technique still provides good denoised
images.

There are some limitations in this study. First, the simu-
lated breast CT data are based on a monochromatic x-ray
beam with the kilovolt �kV� value set to be approximately

FIG. 9. Human subject result No. 2. Top row shows original reconstruction,
denoising, resulting in markedly reduced noise levels.
the same as the effective kV value of the x-ray beam used to
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acquire the empirical data. Second, the parameters in the
measurement model used for adding noise to the simulated
projection images are all hypothetical, given that presently
their empirical values are unknown. Hence, the task of cali-
brating the dose in the simulation study cannot be fulfilled at
this stage. In future work, considerable optimization remains
to be performed to calibrate the PDEtomo technique using
empirical images taken with physical phantoms as well as
human subjects. Given the robust trends shown in this study,
however, the PDEtomo technique should continue to match or
outperform the Wiener and possibly ATM technique, espe-
cially if dose is further lowered such as to achieve a breast
CT scan with equal or less dose than single-view conven-
tional mammograms.

Due to the very low photon fluence on each projection
view in dedicated breast CT, the electronic noise is one of the
major sources of the overall noise, especially in dense breast
regions or if the dose is further reduced. The present version
of the PDEtomo technique does not consider the effects of
additive electronic noise. It will be worthwhile to explore the
possibility of taking the characteristics of this type of noise
into account in the denoising technique or to combine it with
a statistical-modeling approach that explicitly treats the elec-
tronic noise.

In conclusion, a partial diffusion equation based denoising
technique was developed specifically for sinogram smooth-
ing in dedicated breast CT data. By incorporating into the
algorithm the knowledge of the nonuniform distribution of
the noise in the projection image after preprocessing but be-
fore reconstruction filtering and backprojection, it provides
substantially denoised data with sharp edges. The technique
may hold even more promise on data sets acquired with

nal slices from normal breast. Bottom row shows same slices with PDEtomo
coro
lower dose.
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Abstract 

Dedicated breast CT imaging is a novel breast imaging modality. Compared to 

conventional mammography, breast CT may improve lesion detection while using a 

comparable radiation dose. As a result of its cone beam geometry, however, breast CT 

suffers from image degradation due to scatter radiation. Moreover, the breast CT images 

divide the dose of mammography among hundreds of projection views, resulting in 

considerable quantum noise. It is therefore desirable to reduce scatter and noise in the 

reconstructed breast volume without loss of spatial resolution.  

Several new image-processing techniques were developed based on the unique 

physical properties of this modality. Firstly, a Gaussian noise model was proposed for 

scatter removal, which was a statistical model based post-acquisition scatter 

compensation technique. Algorithms using maximum likelihood estimation and 

maximum a posterior estimation of scatter-free images were evaluated.  

Secondly, several partial diffusion equation (PDE) based denoising technique 

were developed for dedicated breast CT. The techniques were thoroughly evaluated 

based on simulation. Specifically two issues were considered: (1) where in the 

reconstruction process to apply a denoising technique and (2) which of the spatially 

adaptive techniques is a better choice. The technique was then applied to human subject 

data.   

Finally, the previously described image processing tools were then analyzed for 

the clinically relevant task of lesion detectability in human subjects, using numerical 

observers and ROC analysis methodology.  

Using images obtained on a full field digital mammography system, the Gaussian 

noise model demonstrated effective scatter removal. The denoising techniques were also 
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promising. Applying a denoising technique before reconstruction provides better images 

than after reconstruction. A PDE technique taking into the account the non-uniform 

distribution of the noise in the projection image after the preprocessing step provides 

excellent denoised data with sharp edges. It outperforms two other spatially adaptive 

techniques (Wiener and 2D ATM filters). The preliminary ROC study showed that with 

a fixed size lesion in real anatomical backgrounds, PDE-denoised images had higher 

detectability, higher CNR and better qualitative appearance. These promising new 

techniques for noise and scatter compensation pave the way for future implementations 

of dedicated breast CT. 
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1  Introduction 

1.1 Clinical Relevance: Breast Cancer 

Breast cancer is the most common cancer type that affects women globally [1]. In 

the United States, due to the long life spans, the incidence is even higher: every one 

woman over eight will develop breast cancer in her lifetime. It was estimated that 

approximately 178,480 new invasive breast cancer cases would be found in American 

women in 2007 [2]. Moreover breast cancer is one of the leading causes of cancer-related 

women mortality, secondary only to lung cancer. It is predicted that the disease will kill 

about 40,460 US women in 2007 [2]. 

Presently there is no effective way of preventing the disease. However, detection 

of the cancer at its early stage has been found to significantly improve survival rates [3-

6]. For example, when breast cancer is detected at the localized stage, the five-year 

relative survival rate is 98% [2]. By contrast, when it is not found until metastasized, the 

five-year survival rate drops dramatically. In addition, when the cancer is found earlier, 

more viable treatment options are also available [7-9]. 

X-ray mammography is presently the primary tool for early detection of breast 

cancer. The standard screening procedure is to acquire a pair of two-dimensional 

projection images: mediolateral oblique (MLO) view and cranial-caudal (CC) view. The 

abnormalities can manifest themselves on a mammogram as masses, clusters of 

microcalcifications, or architectural distortions. An annual screening program based on 

mammography is recommended for women older than forty years or younger women 

with higher risk by National Cancer Institute, American Cancer Society and American 

College of Radiology. It has been proven to reduce the mortality rate of the breast cancer 

since its initiation. For example, screening mammography decreases the fifteen year 



 

2 

mortality for women in their forties by 20% [10]. Also, it is found that screening is most 

effective for women older than 55 years old [10, 11]. 

1.2 Limitations of Screening Mammography 

While film-screen X-ray mammography has been proven to be effective, it is not 

perfect in its detection sensitivity of breast lesions due to several limitations such as 

two-dimensional (2D) projection data acquisition and restricted range of linear optical 

response of the detector. With 2D acquisition, the anatomical tissue superimpose with 

each other such that the anatomical noise may potentially obscure a breast lesion. 

Overall, it has sensitivity within the range of 63% to 88% depending on the patient’s age 

group, family history [12] and breast density [13]. For women with dense breasts, the 

sensitivity is lower since on their mammograms the dense appearance of the breast 

tissue is more likely to obscure any abnormalities and makes the detection of breast 

cancer even more challenging [14]. In addition, the situation gets complicated by the fact 

that breast density is also a risk factor by itself, which means that women with dense 

breasts tend to have higher probability of getting breast cancer. 

1.3 Emerging New X-Ray Technologies for Breast Imaging 

Other imaging modalities that are explored for breast imaging are: Ultrasound, 

Magnetic Resonance Imaging (MRI) and nuclear medicine. Ultrasound imaging of the 

breasts is able to detect some of the lesions that are missed by film-screen 

mammography. However, using breast ultrasound technique as a screening tool is 

debatable due to the fact that those lesions are found at the expense of many 

unnecessary biopsies. For example, in the same study mentioned above [13], ultrasound 

found 33 cases of breast cancer that were undetected by screening mammography, but it 

also led to additional 287 false positive cases. Magnetic Resonance Imaging (MRI) is 
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playing an increasing role in breast imaging, such as for screening of high-risk women, 

local staging of cancers, and monitoring neoadjuvant therapy. 

With the advent of flat-panel detector techniques, new approaches to breast 

imaging using x-rays are emerging. Among them, the three major categories are: Full-Field 

Digital Mammography (FFDM), breast tomosynthesis and dedicated breast CT.  

1.3.1 Full Field Digital Mammography 

The major difference between a digital breast-imaging system and a film-screen 

mammography system is the detector type. The advantages of the digital flat-panel 

detector over the film-screen detector include excellent linear response and wide 

latitude, which overcome the underexposure or overexposure problem existing with the 

film-screen detector. The wide latitude and use of higher quality spectra may also permit 

dose reduction. It is of great interest to researchers to know whether a FFDM system 

poses any advantage to the conventional film-screen system in term of lesion 

detectability [15-23]. Generally the diagnostic accuracies based on the two types of 

system are comparable. For women within certain categories, the FFDM system even 

outperforms the film-screen system. For example, Pisano et al [18] found that digital 

mammography has statistically better diagnostic accuracy than film-screen 

mammography for women less than 50 years old, having dense breasts, or pre-

menopausal or peri-menopausal.  

Another advanced x-ray technology based on FFDM is the dual-energy digital 

mammography technique [24, 25]. The breast is imaged twice: one at a low energy level 

and the other at a high energy level. The resultant images are subtracted to reduce the 

anatomical noise in the detection of microcalcifications. 

Although promising, the FFDM technique and its variant share with the film-

screen technique one common limitation: the images acquired are still two-dimensional. 
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Projecting a three-dimensional object into two-dimensional image inevitably causes the 

superposition of the breast tissue and sometimes hinders the detection of lesions. 

Therefore x-ray breast imaging has been moving forward to three-dimensional 

techniques, which are also made possible by the progress of flat-panel detectors. Among 

these are breast tomosynthesis [3, 5, 26-31] and dedicated breast Computed 

Tomography (breast CT) [32-38] techniques which may improve detection of breast 

lesions among women with dense breasts as well as to reduce unnecessary callbacks of 

normal fibro-glandular tissue mimicking the appearance of a lesion. 

1.3.2 Breast Tomosynthesis 

The modern breast tomosynthesis technique belongs to the category of geometric 

tomography or linear tomography, which was proposed in the early 1930s [39]. 

Niklason et al [31] implemented the tomosynthesis technique with a moving x-ray tube 

and a stationary detector. The x-ray tube moves along an arc path, which spans a 

limited angle range, as is shown in Figure 1.1. At each x-ray tube location, a low-dose 

projection image is acquired. The total number of projections is also limited. This type of 

tomosynthesis configuration can be easily realized on a FFDM system. Therefore, the 

progress of the FFDM technique has greatly encouraged the breast tomosynthesis 

development. A major component of its development is the tomosynthesis 

reconstruction algorithm. Various methods have been proposed including the iterative 

reconstruction technique such as maximum likelihood expectation maximization 

(MLEM) and those based on linear algebra, such as the shift-and-add method [40], 

Niklason’s modified shift-and-add method [31], filtered-back-projection (FBP) [41, 42], 

and Matrix Inversion Tomosynthesis (MITS) [30]. Some studies [28, 30, 43] were 

conducted to compare these techniques. 
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Figure 1.1: Picture of a breast tomosynthesis system. The red arrow indicates the arc 
path that the x-ray tube moves along. 

 

In the breast tomosynthesis, in order to reduce tissue overlap, patient motion, 

scatter radiation and dose, the breast is compressed as in conventional mammography. 

Another limitation is the existence of artifacts and out-of-plane blurring due to the 

limited angular sampling intrinsic in the technique. By contrast, a dedicated breast CT 

system acquires the full range of low-dose projections around the uncompressed breast 

and therefore does not have these problems. 

1.3.3 Dedicated Breast CT 

Not long after the CT technique was invented in 1972, a group of researchers 

tried breast CT imaging for the first time [44-48]. They applied the whole-torso-scanning 

mode and found that a high patient dose was needed to get sufficient image quality.  
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With the advent of high-resolution flat-panel detectors at the end of the 1990s, breast 

imaging via a cone-beam CT becomes possible and breast CT regained attention.  

Unlike a conventional CT system, where the x-ray tube/ detector move around 

the torso of a patient, a dedicated breast CT system has a joint x-ray tube/detector 

move just around a breast. It is set up as is shown in Figure 1.2: a woman patient lies 

prone on a lead-shielded table with one breast hanging freely through a hole on the table. 

The x-ray tube and the flat panel detector are installed vertically underneath the table. 

The tube-detector assembly rotates around the exposed breast of the patient. By this 

design of the dedicated system, the field of view (FOV) of the detector can be fully 

employed for breast imaging. What’s more, since other tissues do not attenuate the x-ray 

beam, the effective glandular dose delivered to the patient can be lowered to match the 

two-view screening mammogram for the same breast, as is demonstrated by Boone et al in 

2001 [49]. 

 

 

Figure 1.2: Illustration of a dedicated breast CT system. The x-ray tube and flat-
panel detector rotate together around the breast, which is the only region to be 
illuminated. 
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There are five research groups investigating dedicated breast CT. They are: Dr. 

Boone et al in University of California, Davis [50-53], Glick et al in University of 

Massachusetts [54-56], Ning et al in University of Rochester [36, 37, 57, 58], Shaw et al 

in University of Texas M.D. Anderson Cancer Center [59-61], and Tornai et al in Duke 

University [32, 38, 62-64].  In addition, they all have fabricated their own dedicated 

breast CT systems. These breast CT systems differ in their detailed technical aspects: 

the choice of x-ray beam, the x-ray source orbit, and the peak voltage and tube current 

values used.  

1.4 Statement of Work 

This dissertation has been conducted in close collaboration with Boone’s breast 

CT research group, which provided raw human subject datasets and corresponding 

geometric calibration results. The components of this dissertation are organized into a 

flowchart and shown in Figure 1.3. 

 

 

Figure 1.3: Flowchart to show the components of the dissertation. 
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As the first basic step, the filtered back-projection algorithm for cone beam was 

custom-written for tomographic reconstruction. Its technical details will be described in 

Chapter 2.  

Chapter 3 to 5 cover the topic of image processing in dedicated breast CT. There 

are two major tasks: scatter removal and noise removal. Like many other x-ray imaging 

modalities, detection of scatter radiation in projection images is a major cause of image 

degradation. In Chapter 3, a new post-acquisition numerical scatter removal technique 

based on a statistical model will be introduced. Second, because the breast CT images 

are acquired at low dose levels (the dose is comparable to that in the two-view screening 

mammography for each breast) over many projections, each projection image contains a 

considerable amount of quantum noise as well as electronic noise. Therefore it leaves 

space for image improvement via post-acquisition image denoising techniques. In this 

project, we are interested in investigating Partial Diffusion Equation (PDE) based 

nonlinear denoising technique for cone-beam CT, which is a flexible tool with effective 

noise removal while maintaining detail. In Chapter 4 and 5, we will focus on different 

aspects of the image denoising in dedicated breast CT. Chapter 4 is mainly a simulation 

study. It covers the comparison between different steps in the reconstruction process 

where a denoising technique can be potentially applied. Chapter 5 first compares the 

PDE technique investigated in Chapter 4 to other spatially adaptive techniques using 

simulations. Then, the PDE technique is used on some human subject breast CT datasets 

for its performance evaluation.  

A pilot mass detectability study based on simulation will be given in Chapter 6. 

Evaluation of the effect of image processing techniques on the reconstructed CT images 

is a difficult task, especially for those non-linear processing techniques like PDE 

denoising techniques. Since the ultimate purpose of any medical image is for the 
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detection and diagnosis of tissue abnormalities, the most clinically relevant evaluation 

criterion is to see how the image processing affects the final diagnosis of diseases. 

Mathematical or numerical observers will be used and receiver operating characteristic 

(ROC) analysis will be done in this chapter. 

It is hoped to show that: 1) the energy-integrating characteristic of a flat-panel 

detector can be incorporated into a model for numerical scatter compensation; 2) PDE 

based denoising techniques are good choice for noise removal in dedicated breast CT; 

and 3) the noise removal by PDE techniques can translate into the benefit of improved 

mass detection in dedicated breast CT. 
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2 Breast CT System and Reconstruction 

           In this chapter, the feasibility of dedicated breast CT using a dose level 

comparable to that of a conventional two-view mammography will be firstly described. 

Then the structure of a prototype breast CT system built in University of California 

Davis, the first of its kind, will be shown. Finally, the tomographic reconstruction of the 

CT data will be introduced, which finish the basic process from raw data acquisition to 

3D volume reconstruction.  

2.1 Feasibility of Breast CT Imaging 

This section summarizes some preliminary breast lesion detection studies in breast 

CT in the literature [49, 59]. Please note that for any of the discussions, the dose in the 

breast CT is comparable to the two-view mammography for the same breast. 

The mechanism of tissue contrast in the reconstructed breast CT images is 

different from that on a mammogram. In breast CT images, the contrast between tissues 

is due to their different attenuation coefficients. The linear attenuation coefficients of 

tissues in a breast decrease when the monochromatic x-ray beam energy is increased 

[36]. The linear attenuation coefficient of calcification is much higher than that of other 

tissues including adipose, glandular tissues and carcinoma. The contrast between a 

carcinoma and other normal breast tissues decreases with a higher photon energy. When 

a polychromatic x-ray beam is used, the effective linear attenuation coefficient for each 

type of tissues can be calculated by weighting the ones under monochromatic case and 

converted to the CT numbers. The CT numbers of breast carcinoma are slightly higher 

than those of glandular tissue, but much higher than adipose tissue [49]. 
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The detection of a mass depends not only on the contrast of the mass to its 

surrounding tissue, but also on the noise level in the image. A metric combining these two 

aspects is contrast-to-noise ratio (CNR). In breast CT, the CNR is independent of the 

lesion size. The signal-to-noise ratio (SNR) takes into account the lesion size, and is 

related to the CNR through the following equation: 

! 

SNR = CNR " N

1

2         ( 2.1 ) 

where N is the number of pixels occupied by a lesion [49]. Based on an ideal simulation 

where a lesion is embedded into uniform glandular tissue (noise level is measured from a 

cylindrical PMMA phantom with a diameter of 10 cm), the SNR increases linearly with 

lesion diameter such that a lesion of a diameter of 1mm has the SNR of 5 [49], which is 

detectable according to the Rose criterion [65]. However, this simulation doesn’t take 

into account the anatomic noise due to the natural appearance of the glandular tissue. 

With the anatomic noise, the SNR will be lower. But still, according to Boone et al [49], it 

is likely to detect smaller masses on breast CT than on conventional mammography, 

which by contrast can detect a median sized lesion about 11mm in diameter. 

For the detection of microcalcifications, the limiting factor is usually the spatial 

resolution. It is well known that a film-screen system has excellent spatial resolution. 

The spatial resolution of breast CT is not as high. But state-of-the-art flat-panel x-ray 

detectors with a high frame rate can have pixel size of less than 200 µm. For example, 

most of the breast CT systems adopted the Varian Paxscan 4030CB flat-panel detector, 

whose pixel size is 194 µm. A human observer study based on experimental data 

showed that using this pixel size, a microcalcification with a diameter larger than 300 

µm could be reliably detected [59]. 
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In summary, the preliminary studies show that a dedicated breast CT system 

incorporating a high-resolution flat-panel detector has the potential to detect both 

microcalcifications and masses. The detectable masses based on the breast CT system 

are likely to be smaller than those can be detected based on a conventional 

mammography system. 

2.2 Breast CT system in UC Davis 

The University of California Davis has custom-built a prototype breast CT 

system, which is the first of its kind for clinical data acquisition [66]. A picture of the 

system without the table top is shown in Figure 2.1. The x-ray tube and the flat panel 

detector are installed vertically underneath the table. The tube-detector assembly rotates 

around the exposed breast of the patient. This setup is different from a conventional CT 

system, where the x-ray tube and detector move around the torso of a patient. Since 

only the breast to be imaged is exposed to the x-ray beam, the dose to the patient can be 

greatly reduced. A pilot study [49] showed that this type of dedicated breast CT 

system is able to achieve a satisfactory image quality with dose level comparable to 

standard two-view mammography for the same breast. 

 

Figure 2.1:  Picture of the breast CT system in UC Davis. The table top is removed. 
Used with permission by John Boone PhD, University of California Davis. 
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2.2.1 Hardware Components of the System 

The dedicated breast CT system has the following hardware components. The x-

ray tube has a Comet beryllium-windowed, water-cooled tungsten anode and a nominal 

focal spot with the size of 0.4 mm x 0.4 mm. A Pantak high frequency x-ray generator 

drives the tube with the voltage ranging from 10 kV to 110 kV. The CsI-based flat panel 

detector (Varian, Paxscan 4030CB) has a field of view of 40 mm x 30 mm. Using 30 

frames per second and 2 x 2 pixel binning mode, the detector generates the images each 

with matrix size of 1024 x 768 and pixel dimension of 0.388 mm x 0.388 mm. A 

Kollmorgen servo motor was employed to drive the rotation of the tube-detector 

assembly as well as encoding the angles. The source-to-isocenter distance is 46.9 cm and 

the source-to-detector distance is 88.4 cm. A polychromatic x-ray beam of 80 kVp and 

circular orbits of x-ray source are used for data acquisition.  

2.2.2 System Calibration 

There are two components of system calibration in breast CT: geometrical 

calibration and background calibration. A critical step is the accurate acquisition of 

geometry of the breast CT system. To illustrate the importance of this, let us look at 

Figure 2.2. The images are a reconstructed slice of a simulated high-contrast object. The 

in-plane resolution of reconstruction is 0.2 mm and out-of-plane resolution is 0.5 mm.  

What’s shown on the right is the accurate one, and the one on the left is the result based 

on one geometry parameter (the projection location of the central ray along horizontal 

direction) off by a single pixel (on the detector plane, 388 µm). See how different the 

image sharpness is in these images.  An automatic high precision geometric calibration 

technique based on metal ball bearings array was developed [52]. Background 
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calibration or flat field correction is a step aimed at removing nonuniformity in the 

background [50]. 

 

 

Figure 2.2: Example to show the importance of acquiring the accurate geometry of 
the breast CT system. On the right is the accurate reconstruction. On the left is the 
one reconstructed with the central ray off by a single pixel.  

 

2.3 Tomographic Reconstruction  

  As mentioned in the previous section, the cone-beam geometry of X ray is 

employed in the dedicated breast CT system. It is made possible by the advancement in 

the development of flat-panel detectors. The advantage of adopting a cone-beam x-ray 

illumination of the object is the fast acquisition of true volumetric data, which in turn 

avoids or reduces the motion artifacts. 

2.3.1 Reconstruction Technique Categories 

The three-dimensional reconstruction algorithms can be categorized as either 

exact or approximate. An exact reconstruction algorithm is able to reconstruct the 

volume to any desired accuracy as long as noise free projections with sufficient view 
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angle sampling and sampling of projection data are provided. The approximate 

reconstruction algorithm is often developed in the case where an exact reconstruction 

method is either impossible or less desirable due to the consideration of the 

computational speed or simplicity. 

According to the Tuy-Smith sufficiency condition [67], if all the planes that 

intersect the object also intersect the orbit of the x-ray source, then there exits an exact 

reconstruction algorithm. A circular orbit does not satisfy this condition. For example, 

there exist many planes that are parallel to the orbit (i.e., do not intersect the orbit) and 

intersect the object. Therefore, no exact reconstruction algorithm is available in this case. 

Figure 2.3 shows a torus-shaped volume that can be accurately reconstructed via a 

circular orbit, with a ‘shadow zone’ indicating the region that cannot be fully sampled. 

However, as long as the cone angle is not large, the approximately reconstructed volume 

is of reasonably good quality. 

 

Figure 2.3: When a circular orbit is used, the volume that can be accurately 
reconstructed is a torus-shaped volume. By contrast, the shadow zone marked by 
the arrow will have some artifacts.  
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Many approximate cone-beam reconstruction methods have been proposed [68-

70]. Generally, they can be classified into two categories: analytical ones or algebraic 

ones. The theory behind the analytical reconstruction is the central slice theorem. In a 

two-dimensional framework, the central slice theorem states that the Fourier transform 

of the one dimensional projection data is the sampling of the line along the same 

orientation of the detector in the Fourier transform of the two-dimensional image. An 

illustration is shown in Figure 2.4. 

                                       

Figure 2.4: Illustration of the central slice theorem.  

 

The central slice theorem provides a direct reconstruction idea through the 

inverse Fourier transform. This method has several drawbacks: 1) the sampling points in 

the Fourier domain are not Cartesian; 2) the interpolation in Fourier domain is necessary 

but susceptible to error; and 3) the error of the interpolation in the Fourier domain will 

affect the overall appearance of the image in the space domain. Instead of the direct 

Fourier space based method, another attractive method is the filtered back-projection 

 

 
1D Fourier 
Transform 

 2D Fourier Transform 
TraTranTransform 

V 

U 

Y 

X θ  θ  



 

17 

(FBP), which is one of the most popular reconstruction algorithms. Not only does it 

avoid the problems that direct Fourier algorithm has, but it also is computationally more 

efficient because the data acquisition and reconstruction can be done in parallel. 

A different class is iterative reconstruction algorithms that adopt a different 

strategy. Starting from an initial estimation of the slice or volume to be reconstructed, the 

forward projections of the estimated slice or volume are obtained and compared to the 

actual projection data. Then the estimation of the slice or volume to be reconstructed is 

updated based on the difference. The procedure is repeated until the projections based 

on the reconstructed data are close to the actual projection data. If the reconstructed 

data is updated based on the geometry, the iterative algorithm is called the algebraic 

reconstruction technique (ART); By contrast, if the statistical models are assumed, the 

iterative algorithm is called a statistical iterative reconstruction. One of the popular ones 

in this category is the maximum likelihood expectation maximization (MLEM) algorithm.  

The iterative reconstruction methods usually are computationally demanding. 

When the number of projection view angles gets larger, this will be more of the issue. One 

variation of MLEM is Ordered Subset Expectation Maximization (OSEM) [71]. It has 

higher computational efficiency than conventional MLEM while maintaining the 

comparable reconstructed image quality.  

On the system in University California Davis, the cone angle for a breast with the 

mean diameter of 14 cm is less than 10 degrees; therefore an approximate technique will 

provide reasonably good reconstruction quality. In addition, a total of about 500 

projections are obtained over the 360 degrees. Since the datasets have such a high 

angular sampling rate, the computationally efficient FBP algorithm was chosen for 

reconstruction. The Feldkamp type FBP [72] for cone-beam geometry  was custom 

written by the author and a Shepp-Logan filter [73] was used. 
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2.3.2 FBP 

Before feeding into the reconstruction core, the raw projection images need to be 

preprocessed. The simplest preprocessing step is to convert the raw projection image 

into the line integral via the logarithm operation. On each raw projection image, a region 

of interest (ROI) is picked up from outside the breast, and the pixel value without 

attenuation I0 is approximated by the mean pixel value with the ROI. Then the line 

integral image is obtained by:  

! 

lij = log(I0 /Iij ),        ( 2.2 ) 

 where Iij is the pixel value at (i, j) position.  

The details of the FBP core are as follows. 

Figure 2.5 shows the three-dimensional coordinate system used in the proposal. 

The right-hand rule applies. 

 

 

 

     

 

 

 

 

 

 

Figure 2.5: Coordinate systems used in the cone-beam CT reconstruction. (a) 3D 
view; and (b) 2D view along +Z direction. 
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Other than the fixed coordinate system X-Y-Z, a rotational coordinate system 

will play an important role in the cone-beam reconstruction. It is denoted by S-T-Z. 

Figure 2.5 (b) illustrate the X-Y or S-T plane viewed along the +Z direction. The 

relationship between the two coordinate systems can be easily derived as: 
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where β is the view angle shown in Figure 2.5 (b). 

The cone-beam geometry can be thought of as ensembles of tilted fan-beams 

together with an untilted fan-beam. The untilted fan-beam is within the plane of x-ray 

source trajectory and is the only plane that can be exactly reconstructed. Its 

reconstruction can be realized by using the Feldkamp fan-beam reconstruction algorithm 

[74]. The corresponding equation is shown as follows: 
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where Rβ(p) is the projection with view angle of β, and ρ is the radius of rotation of the x-

ray source. 

The Feldkamp FBP algorithm for cone-beam geometry [74] is the expansion of 

the fan-beam reconstruction algorithm. By including the distance of the tilted fan-beams 

to the untilted one, the generalized FBP algorithm applicable to the cone-beam geometry 

is as follows: 
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where ζ is the distance along z direction. The algorithm works in a slice-by-slice manner. 

There are generally three steps in FBP: 
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1) Multiplication of projection data with the pre-weighting factors

! 

"

"2 + p
2

+# 2
. 

The factors are dependent on the location of each point. 

2) Filtering of the weighted projection data by applying a reconstruction kernel in a 

slice-by-slice manner. In the ideal case where no quantum noise exists, a Lak 

filter [73] can be used. The Lak filter has the 1/f frequency response. With the 

real data with noise, however, the Lak filter will amplify the high-frequency noise 

such that the reconstructed volume is overwhelmed by noise. Therefore, a filter 

with high-frequency roll-off is preferred. A good option is the Shepp-logan filter. 

Or a Hamming filter [73] can be utilized, whose cut-off frequency will be 

adjustable.  

3) Back-project the filtered projection data along the cone-beam arrays with 

different weights 

! 

"2

(" # s)2
 depending on their relative distance to the x-ray 

source. The voxel-driven back projection is used. The available options for 

interpolation are the nearest neighbor and linear interpolations. For the results 

shown in the thesis, linear interpolation is used. 

To summarize, feasibility and technical details of breast CT imaging are 

described in this chapter. It is shown that dedicated breast CT has the potential to 

detect smaller lesions than conventional mammography. Boone et al in University of 

California Davis has custom-built a prototype system and acquired some human subject 

data. After raw data is calibrated, it is tomographically reconstructed using the 

Feldkamp FBP algorithm, which was custom-written in our group. From next chapter on, 

several projects aimed at developing image processing techniques of scatter removal and 

noise removal in dedicated breast CT will be introduced.  
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3 Gaussian Noise Model for Scatter Compensation 

This chapter and the next two chapters focus on different aspects of image 

processing in breast CT: scatter removal in this chapter, noise removal in chapter 4 and 

chapter 5.  

3.1 Introduction 

Scatter radiation is primarily due to the Compton interaction of photons with 

atomic electrons in the object being imaged [75]. The photons are deflected from their 

incident path with a different energy, as is illustrated in Figure 3.1. These photons can 

either miss the detector or impinge on it. The latter will be inevitably detected due to the 

fact that the detector typically has broad energy sensitivity and does not effectively 

reject photons that have lost energy by scattering. The detection of photons in locations 

that are different from their original path can be considered a component of photon 

detection noise and degrades medical images. A recent Monte Carlo study in 

mammography [76] showed that scattered radiation causes the drop of low-frequency 

modulation transfer function (MTF), changes the shape of MTF and adds considerable 

noise to projection images. In computed tomography (CT) [77], scattered radiation leads 

to cupping artifacts on reconstructed sections [58] as well as inaccurate Hounsfield Unit 

(HU) numbers [78]. 

Because of its deleterious effect on medical images, scatter radiation needs to be 

reduced or compensated. There are two general categories of scatter radiation 

compensation methods: one is hardware compensation such as the application of anti-

scatter grids [79], slot scanning systems [80], or air gaps [81]; the other is software 

compensation via post-acquisition image processing, such as simple estimation-

subtraction [82], convolution-subtraction [83], de-convolution [84], artificial neural 
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networks [85], maximum likelihood expectation maximization (MLEM) [86], or 

Bayesian image estimation [87, 88]. 

In breast imaging, the scatter radiation is a major concern [89-91]. Various grids 

have been designed and their performances on film-screen [92] or digital mammography 

systems [93] have been investigated. An illustration on how a grid prevents scatter 

radiation from getting detected is shown in Figure 3.2. The effectiveness of grids on 

scatter radiation reduction for thick breasts has been proven and their application is 

now a clinically common practice. However, a grid also removes some primary 

radiation, as shown by the middle ray of Figure 3.2. To maintain the same image quality, 

the magnitude of the x-ray beam needs to be increased by a factor of 2 or more 

depending on the x-ray beam and breast thickness [92], which will also increase the 

total absorbed dose of the patient. Studies find that in some situations using grids will 

adversely affect the quality of breast images [90, 94].  

By contrast, post-acquisition image processing techniques won’t change the dose 

that a patient receives. In addition, some studies [91] [87] show that they can be more 

effective than an anti-scatter grid in scatter compensation.  

The latest advanced imaging radiography techniques including dedicated breast 

CT and breast tomosynthesis typically do not use anti-scatter grids due to the difficulty 

of designing a grid that is effective at varying x-ray beam angles. Alternative methods 

are sought, most of which are simple estimation subtraction techniques [58, 95]. In this 

project, a statistical model based post-acquisition numerical compensation technique is 

developed. In this study, we will propose a Gaussian noise model for scatter reduction, 

and derive a maximum likelihood expectation maximization (MLE or MLEM) algorithm 

and a maximum a posteriori (MAP) algorithm. We will then apply the algorithms to 

radiographs acquired on FFDM for preliminary evaluation.  
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Figure 3.1: Illustration of possible interactions between x-ray photons and the 
matter within the diagnostic x-ray energy range. The ellipsoid represents the object 
to be imaged. Photons can be totally absorbed by the photoelectric effect (ray 1), or 
be scattered through Compton scattering (ray 2) and Raleigh scattering (a very small 
portion, thus neglected). The rest will survive the attenuation and are called the 
primary photons or primary radiation (ray 3). 

 

 

Figure 3.2: An anti-scatter grid can be added on top of the detector to remove scatter 
radiation. However, as shown by the middle ray, some primary radiation will be 
blocked as well. To maintain the image quality, the patient dose has to be 
increased.  
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3.2 Gaussian Noise Model 

3.2.1 Assumption 

The detected signal on the detector is the sum of the primary radiation and 

scattered radiation. Scattered radiation can be modeled as the two-dimensional 

convolution of primary radiation with a scatter kernel, which is assumed to be a double 

exponential function based on both the empirical measurements [96, 97] and Monte-

Carlo simulation studies [98, 99]. A sample scatter kernel is shown in Figure 3.3. On the 

projection image, if Y is used to represent the two-dimensional matrix of detected total 

radiation at each pixel, D for the matrix of the primary radiation, S for the matrix of the 

scatter radiation, and P for the matrix of the scatter kernel, then it holds that: 

)*(*** PDPDDSDY +=+=+= ! ,           ( 3.1 ) 

where ** is the two-dimensional convolution operator and δ is the Dirac delta function in 

a matrix form. The task of scatter compensation is equivalent to estimating the unknown 

D from the measured Y. 

One solution is to de-convolve Equation (3.1) [84, 100, 101]. For example, it can 

be solved via the Fourier Transform (FT), i.e.,  

! 

D = FT
"1
(
FT (Y )

FT (# +P)
)

.       ( 3.2 ) 

Or, statistical models can be formulated to solve the problem. In this context D, 

S and Y are all multivariate random variables. Previously, they were assumed to follow 

Poisson distribution [102]. For flat-panel detectors, which belong to the type of energy 

integrating rather than photon counting, the underlying statistics is a compound Poisson 

process [103]. It may be well approximated by Gaussian distribution by matching of the 
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first two moments. The resultant statistical scatter compensation technique is denoted in 

this study as the Gaussian noise model.  

 

 

 

Figure 3.3: Schematic of a scatter kernel with a radially exponential shape. It has 
two parameters: full width at half maximum (FWHM) and magnitude.  

 

3.2.2 The Model 

The Gaussian noise model has following form:     

  

 

           (3.3) 

where di, si, and yi are pixel values at location i corresponding to primary, scattered and 

total radiation, respectively, bi is the expectation of di (B={bi} is its matrix form), and 
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scattered radiation, respectively. The task of scatter compensation here is to estimate B, 

the scatter-free projection image. 

3.2.3 Maximum Likelihood Estimate of Scatter-Free Image 

Using the expectation maximization algorithm shown in the appendix, the MLE 

of the ideal scatter-free image was derived with analytical form shown in Equation (3.4):  
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3.2.4 Maximum A Posteriori Estimate of Scatter-free Image 

MLE estimate is known to increase high frequency image noise. To overcome this, 

some constraints can be put on the noise level within the estimated B. Prior information 

about B can be incorporated via Bayes’s Rule [104], 

)()|()|( BpBYpYBp ! ,       ( 3.5 ) 

where p(B|Y) is the posterior joint distribution of B given the measured pixel values Y = 

{yi; i=1,…,N}, p(Y|B) is equal to the likelihood of B, and p(B) is the prior joint 

distribution of B = {bi; i=1,…,N}. 

We assume that B is a Markov random process. It therefore follows a Gibbs 

distribution: 
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where K is a normalizing factor which is independent of B, U(B) is the energy function, 

and β is a free parameter adjusting the relative weight of this prior on the maximum a 

posteriori estimator of B. When β approaches infinity, the MAP estimate of B 

approaches the MLE estimate of B. 

The energy function is the sum of the potential function, i.e., 
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where C is the set comprised of all cliques in the image. In this study, the Gibbs prior is 

defined over a second-order neighborhood system (i.e., for each pixel, its north, south, 

east, and west neighboring pixels plus its four diagonal neighboring pixels), with each 

clique comprised of two neighboring pixels. There are many forms of the potential 

function Vc (B). We chose one that is adaptive to discontinuity [105]: 
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Vc ({bi :b j}) =
(bi " b j )

2

#c
2

+ (bi " b j )
2

,       ( 3.8 ) 

where i and j are the neighboring pixels within the clique i~j and bi and bj represent their 

respective intensities. δc is an adjustable parameter to regulate the cut-off frequency of the 

noise in the image.  

The MAP estimate of {bi} was calculated through the two-step maximization 

procedure proposed by Hebert and Leahy [106]. 

3.3 Materials and Evaluation Methods 

3.3.1 Test Images 

Images were acquired on a Siemens prototype digital mammography system 

(Mammomat Novation DR; Siemens, Erlangen, Germany) with 70 µm isotropic 

resolution. Both tissue equivalent slabs (CIRS, Inc., Norfolk, VA) and an 

anthropomorphic phantom (model: RMI 165, Gammex Inc., WI) were imaged at 28kVp, 

with a target/filter combination of Mo/Mo. The tissue equivalent slabs were designed to 

be radiographically equivalent to breast tissue with various breast densities. In this 

study, the tissue equivalent slabs used were comparable to a 4-cm-thick compressed 

breast with 50% glandular tissue density. A built-in square-shaped hole in the center of 
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the phantom mimicked a high-contrast lesion in the digital mammography images. The 

anthropomorphic breast phantom has an equivalent composition of 50% glandular 

tissue- 50% adipose tissue and thickness of 5 cm. All images were acquired without an 

anti-scatter grid. For the purpose of scatter measurement, additional images were 

acquired with an array of beam stops (lead discs 3 mm in diameter and 3 mm in height) 

superimposed on the phantoms. A sample radiograph of tissue equivalent slabs together 

with a beam stop is shown in Figure 3.4. Because lead discs absorb all the primary 

radiation, only scatter radiation can be detected behind them. 

 

 

Figure 3.4: Radiograph of the tissue equivalent slabs. The arrays of white disks are 
the shadows of beam stops. The CNR values are obtained based on the dark square 
region of interest. 

 

Images were then fed into the scatter compensation algorithms for processing. 

Both the original and processed images were evaluated through various metrics 

described in the following subsection. 

3.3.2 Image Evaluation Metrics 

The effect of scatter reduction was measured by the residual scatter fraction 

(RSF). At the same time, we anticipated that the contrast-to-noise ratio (CNR) would be 
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constrained or even improved after image processing. We implemented a metric to 

estimate post-contrast CNR. Finally, we monitored with a line pair pattern the effect of 

the algorithms on the spatial resolution of the images. 

3.3.2.1 Residual Scatter Fraction 

Scatter fraction (SF) is defined as the ratio of scatter radiation to total radiation. 

Residual scatter fraction (RSF) indicates how much of the scatter radiation remains after 

applying a scatter compensation algorithm. 

Using the FFDM imaging technique, two sets of images of phantoms were 

obtained: one with, and one without, a beam stop array. The signals behind beam stops 

(lead discs) comprise the scatter radiation, while the total radiation, which is the sum of 

primary radiation and scatter radiation, will reach those regions without beam stops. 

We calculated the measured primary radiation (Pmeasured) by subtracting the mean 

radiation of a region-of-interest (ROI) behind a beam stop from the mean of the same 

ROI location without a beam stop. In the image processed for scatter compensation, the 

mean of total radiation (T) in the same ROI location (Testimated) is the sum of the residual 

scatter radiation and the primary radiation. Thus, 

estimated

measuredestimated

T

PT
RSF
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.       ( 3.9 ) 

3.3.2.2 Contrast, Noise and CNR 

Contrast is defined as the ratio of the difference between the mean radiation 

value of the lesion (Tlesion) and the background (Tbackground) to the mean of the background, 

that is, 

background

backgroundlesion

T

TT
Contrast

!
=

.        ( 3.10 ) 
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Noise, which is the relative noise, is derived by dividing the standard deviation 

(STDbackground) by the mean of the background radiation (Tbackground): 

background

background

T

STD
Noise =

.        ( 3.11 ) 

CNR is the ratio of the contrast to the noise, i.e., 

background

backgroundlesion

STD

TT

Noise

Contrast
CNR

!
==

.       ( 3.12 ) 

CNR by this definition is equivalent to signal difference to noise ratio (SDNR), another 

term often used in literature. 

3.3.2.3 Resolution 

Due to the nonlinearity of scatter compensation algorithms, we could not use 

metric like modulation transfer function, which is designed for a linear system.  Instead, 

a line pair pattern, comprised of alternating bright and dark lines with sizes 

corresponding to Nyquist frequencies with square wave function, was digitally 

embedded in the phantom image.  

The contrast improvement factor (CIF), defined as the ratio of the contrast after 

image processing to the initial contrast, was obtained for the line pair pattern with 

various initial contrast settings. A CIF of 1 or greater was used as the criterion for 

retaining the spatial resolution. The minimal initial contrast that the line pairs can allow 

with CIF of 1 or greater was recorded as an indication of the effect of the image 

processing on resolution. For the various initial contrasts, the corresponding CIF was 

computed arbitrarily at iteration 16. We determined the minimal initial contrast value 

that has a CIF of 1 or greater. 
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3.4 Results 

3.4.1 Scatter Compensation Technique -- Tissue Equivalent Slabs 

Figure 3.5 gives the RSF and CNR results for MLE and MAP algorithms based on 

Poisson noise model and Gaussian noise model. In the MAP algorithms, the free 

parameter β is set at 0.1. Both MLE algorithms reduced RSF values to close to zero and 

decreased CNR values from the original unprocessed value of 47 to slightly below 40. 

The minimal contrast that is retainable during processing using our Poisson-model-based 

MAP algorithm was 1.8%. The MAP algorithms were as equally effective as their MLE 

counterparts in removing scattered radiation from the radiograph; however, they 

increased the CNR values to 56 and 63, for the Poisson noise model and Gaussian 

model, respectively. The minimal contrast retainable using the Gaussian model based 

MAP algorithm was 2.0%, comparable to that of Poisson-model-based MAP (1.8%).  

 

(a)      (b) 

 

Figure 3.5: Plots of (a) residual scatter fraction and (b) contrast to noise ratio as the 
function of iteration numbers between MLE and MAP estimates of scatter free 
image B based on Poisson and Gaussian noise models. While both techniques were 
effective at removing scattered radiation, the MAP based on the Gaussian noise 
model (green line on right) showed greatest CNR improvement. 
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How the magnitude of the scatter kernel impacted the MAP algorithm based on 

the Gaussian noise model was also investigated. Figure 3.6 (a) shows the RSF as a 

function of iteration for different magnitudes. When the magnitude is zero, there is no 

scatter reduction effect. As the magnitude increases, the steady-state RSF decreases. 

When the magnitude is larger than the measured value of 0.52, the scattered radiation is 

overcompensated such that RSF is less than zero. Figure 3.6 (b) depicts CNR results for 

the same scatter kernel magnitudes. Overall, the larger the magnitude, the less CNR will 

increase. The components for CNR calculation including absolute noise, background 

mean, absolute signal difference and contrast are plotted against iteration numbers in 

Figure 3.7.  The resolution results are shown in Table 3.1: the smaller the magnitude, the 

lower the resolution. For the magnitude of 0.2, the minimal retainable contrast during 

processing was 2.7%. For the magnitude of 0, where there was no scatter compensation, 

no contrast was retainable during processing. 

(a)               (b) 

 
Figure 3.6: Plots of (a) residual scatter fraction and (b) contrast to noise ratio as a 
function of iteration numbers were shown for various magnitudes of scatter kernel 
using MAP estimates of scatter free image B based on the Gaussian noise model. A 
magnitude of 0.0 (blue line) corresponds to no scatter removal, magnitude of 0.52 
(green line) corresponds to actual measured values, and a magnitude of 0.65 (purple 
line) overcompensates the scattered radiation, resulting in negative residual scatter 
fraction values. At each magnitude level, the contrast increases asymptotically. 
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                               (a)                                                                      (b) 

 

                   (c)                                                                      (d) 

 

Figure 3.7: Plots of (a) absolute noise, (b) background mean, (c) absolute signal 
difference, and (d) contrast as a function of iteration numbers were shown for 
various magnitudes of scatter kernel using MAP estimates of scatter free image B 
based on the Gaussian noise model. 

 

Table 3.1: Resolution results of the Gaussian noise model based MAP estimates 
with various magnitudes of scatter kernel. The larger the magnitude of scatter 
kernel, the sharper the processed image is. For the magnitude of zero, i.e., no scatter 
removal, the resolution is always degraded. 

Magnitude 0.0 0.2 0.4 0.52 0.65 

Minimal Contrast --- 2.7% 2.2% 2.0% 2.0% 
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3.4.2 Scatter Compensation Technique -- Anthropomorphic Phantom 

The scatter compensation results of Gaussian noise model are shown in Figure 

3.8 and Table 3.2. The scatter removal procedure reduced SF of the radiograph acquired 

without a grid from 45% to 10%, the level that an anti-scatter grid achieves. At the same 

time, the procedure improved the CNR to around twice the value on the image acquired 

with a grid. 

 

            (a) with  grid               (b) without grid              (c) without grid; scatter reduction 

 

       
      

Figure 3.8: Radiographs of the breast anthropomorphic phantom, (a) with an anti-
scatter grid, (b) without an anti-scatter grid, and (c) without an anti-scatter grid and 
with scatter reduction. 
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Table 3.2: Corresponding residual scatter fraction and contrast to noise ratio results 
for the three images shown in Figure 3.8.  

 With a Grid W/O a Grid 
W/O a Grid; Scatter 

Reduction 
RSF 11% 45% 10% 
CNR 7.04 6.99 15.29 

 

3.5 Discussion 

Scatter radiation is a physical phenomenon, which together with photoelectric 

effect is a source of x-ray beam attenuation. The recording of scatter radiation on the 

detector will degrade the quality of the image and thus adversely affect the medical 

diagnosis. Therefore, removal of scattered radiation from projection images is essential 

for improved image quality, particularly for the latest advanced imaging radiography 

techniques including dedicated breast CT and breast tomosynthesis, which typically do 

not use anti-scatter grids. Statistical model based scatter compensation technique is a 

good candidate for dedicated breast CT and breast tomosynthesis imaging. 

 In this study, novel Gaussian noise model for energy-integrating detectors was 

proposed, and both MLE and MAP estimates of the scatter free image were derived. 

Preliminary results were based on the radiographs acquired on a full-field digital 

mammography system for two types of phantoms (tissue equivalent slabs and a breast 

anthropomorphic phantom). Both MLE and MAP algorithms were effective in removing 

the scattered radiation, though MAP outperformed MLE in CNR. For the specific 

phantom and imaging condition, the MAP of the Gaussian noise model outperformed 

the MAP of the Poisson noise model. 

Additional evaluation of the Gaussian noise model MAP algorithm showed the 

importance of accurate characterization of the scatter kernel. If the magnitude of the 
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kernel is less than the actual value, the scatter is only partially compensated. On the 

contrary, if the magnitude of the kernel is larger than the actual value, the scatter is over-

compensated, with less CNR improvement.  The choice of FWHM of the scatter kernel is 

also essential. In Gaussian noise model MAP algorithm, another important parameter is 

β, which regulate the relative importance of the Gibbs prior on scatter-free image B. By 

varying β value, the CNR improvement will be different. Gaussian noise model MLE 

algorithm can be considered to be a special case of Gaussian noise model MAP 

algorithm when β approaches infinity. Therefore, the Gaussian noise model MAP 

algorithm is a very flexible tool, by varying those parameters we can choose the effect we 

want on the radiographs acquired without a grid.  

The Gaussian noise model techniques can be easily applied to dedicated breast 

CT datasets. One straightforward strategy is to apply the scatter compensation 

techniques on individual projection images before reconstruction. However, for reliable 

results it is critical to have the scatter kernel characterization on the dedicated breast CT 

system, which is unknown at the current stage. This study has demonstrated initial 

feasibility for this approach. In the future, the next phase of this research should include 

a physical measurement of scatter kernel for cone beam and comprehensive evaluation 

of the scatter reduction technique on images acquired on the breast CT system. 
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4 Noise Removal in Breast CT: Where to Apply 

In this chapter and the next one, we will talk about the projects on noise removal 

from breast CT data. This chapter focuses on the choice of the step in the reconstruction 

process where a denoising technique will be applied based on a simulation study. 

Chapter 5 will focus on a PDE technique we developed for breast CT noise removal, 

providing both simulation and clinical study results. 

4.1 Introduction 

Preliminary human subject data acquired on our first prototype breast CT 

system [66] provide exciting new information of the breast that was not available in the 

past. Yet, because the relatively low total dose (comparable to the standard two-view 

mammography for a single breast) must be split among a large number of projection 

views (around 500), thin slices in reconstructed breast volumes contain considerable 

noise. Thus it is desirable to be able to remove the noise to improve the conspicuity of 

breast lesions. At the same time, it is desirable to maintain image resolution. The 

denoising technique can also be applied in breast CT to reduce the patient dose while 

maintaining the image quality.  

For low dose CT, some general-purpose sinogram smoothing techniques based on 

either penalized likelihood [107] or penalized weighted least squares [108] have been 

reported in the literature. These techniques can be potentially applied on dedicated 

breast CT datasets. Zhong et al [109] developed a wavelet-based technique and applied 

it on phantom breast CT data. Their results showed that with denoising, dose could be 

potentially reduced by up to 60%. 

Partial Diffusion Equation (PDE) based technique [110, 111] is another 

denoising method which is effective not only in removing noise but also in preserving 
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details. At the expense of computational cost, this iterative method can provide more 

freedom in choosing the desired denoising effect. In this study, we developed three 

variants of PDE based denoising techniques applicable to different steps of the breast 

CT reconstruction process and compare them against each other to find the best step for 

noise removal in breast CT. 

4.2 Materials and Methods 

4.2.1 Simulated Breast CT Datasets 

In this study, simulated breast CT datasets were generated for the analysis. The 

computer-generated breast is a hemisphere with radius of 7cm. It has homogeneous 

breast tissue with a uniform linear attenuation coefficient of 0.17 cm-1 and is surrounded 

by 1 mm thick skin [112] with linear attenuation coefficient of 0.3 cm-1. A contrast detail 

phantom was simulated and embedded at the center of the breast. The parameters of 

the contrast detail phantom are: for each 4 by 4 lesion array, sizes vary vertically (6, 5, 

4, and 3 mm); contrasts of the lesions are 15%, 10%, 5% and 3% from left to right. Five 

of these arrays were embedded in the shape of a plus sign to cover multiple areas in the 

central coronal slice in order to detect any regional variations in image quality. Perfect 

detection would correspond to five sets of sixteen lesions or eighty in total. This 

simulated breast together with lesions was scanned virtually by a monochromatic x-ray 

cone beam with infinitely small focal spot and ideal flat-panel detector with 100% 

detective quantum efficiency. The geometric parameters are the same as the physical 

breast CT scanner described in Chapter 2. 

For each 2D projection image, an analytical line integral image was first obtained 

based on the aforementioned virtual dedicated breast CT scanning. A noisy raw image 
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was generated according to the measurement model [113]. The model takes into account 

both photon quantum noise and electronic read-out noise. It has the following form: 

! 

Y
i
=G

i
E " Poisson(I

0
e
#li ) +Gaussian(0,$ 2

) ,           ( 4.1 ) 

where Gi is the gain factor of the imaging system, 

! 

E  is the mean energy level of the 

polychromatic x-ray beam, and the Gaussian term is for the electronic noise. In our 

simulation we chose Gi=0.0035 /keV,

! 

E =40 keV, and σ2=10. The values of Gi and σ2 

were referred to those used in a previous publication [113].  

 

Figure 4.1 One-dimensional line integral profiles of both simulation and clinical 
datasets. It’s seen that I0=2.5e4 gives a roughly comparable profile to the clinical 
cases. 

 

Two I0 values are used. The exposure level affects the noise content of line 

integral at a fixed location. By varying the exposure levels and plotting the line integrals 

against those of human subject data, it is found that I0=2.5e4 gives a comparable noise 

level for the same line integral values, as is shown in Figure 4.1. Clinical case 1 and case 

2 have a breast radius of 7.4 cm and 7 cm (same as the simulation data) in coronal view 
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respectively. The first 5 pixels are set zero due to the bad pixels of the detector. The 

peak of clinical case 2 is due to the superposition of some tissue outside of the breast. 

The second exposure level used is I0=1e4,which is 40% of the first exposure level [109].  

4.2.2 PDE Denoising Techniques  

Along the reconstruction process, there are four possible steps where a denoising 

technique can be applied, as illustrated in Figure 4.2. However, applying a denoising 

technique in step 1 won’t be very effective due to the nonlinear operation of the 

preprocessing step. Only step 2, 3 and 4 are considered. All together three variants of 

the Partial Diffusion Equation based denoising techniques were implemented for this 

study, corresponding to the three steps considered. First, the standard 2D PDE 

technique was applied at step 3. Second, a spatially variant version of 2D PDE denoted 

as PDEtomo is used at step 2. Third, a 3D PDE is used at step 4. The technical details of 

them are described as follows.  

 

 

Figure 4.2: Illustration of possible steps in the reconstruction process that an image 
denoising module can be applied to in dedicated breast CT.  
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4.2.2.1  PDE2D 

The PDE denoising strategy was inspired by the heat equation, which regulates 

the spatial temperature distribution at a certain time. When the time period is very long, 

the temperatures tend to be uniform in space, i.e., the temperature map is smoothed over 

time. Therefore, if any image needs to be denoised, it can be treated as a temperature 

image and fed into the heat equation for smoothing. The simplest case will be the heat 

propagation in a homogenous media, or equivalently, smoothing equally all over the 

space. The heat equation in this case will be: 

! 

"I

"t
= k#

2
I =# $ (k#I),         ( 4.2 ) 

where k is a scalar diffusivity constant of the homogeneous media, 

! 

"I  is the gradient of 

the image I and 

! 

"
2
I =" # ("I) is the Laplace operation on image I over the spatial 

variables [114].  

This simplest case will smooth out both the noise and the details such as the 

edges in the image. Instead, a nonlinear PDE not only removes the noise but also 

preserves the details in the image: 

! 

"I

"t
=# $ (p(#(G% & I) )#I) .                                 ( 4.3 ) 

The function of p(.) is called the diffusivity function, a function of the norm of the 

gradients in the image |∇I|. It is used to regulate the local smoothness. In the presence 

of noise, the gradients can be unbounded. To overcome this problem, a Gaussian kernel 

Gσ with the standard deviation of sigma σ is applied to the image before gradients are 

computed as Catte et al [115] suggested.  

In this study, we chose a diffusivity function proposed by Perona and Malik 

[110]: 
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! 

p(d) = e
"
d
2

# 2 ,          ( 4.4 ) 

where delta 

! 

"  is a user-specified parameter. A sample diffusivity function with delta 

value of 2 is shown in Figure 4.3. When the image gradient norm (or in the discrete case, 

the pixel value difference) is very large at a location region, the diffusivity will be very 

small, and thus the local image values will be preserved within a small time period 

whereas another more uniform region will be smoothed out at the same time. The 

parameter 

! 

"  acts like a cut-off value; image regions with gradient norm below 

! 

"  will 

have more noise removed while regions with a higher gradient norm will stay sharp.  

 

Figure 4.3: Diffusivity function with delta value of 2.  

 

The diffusion equation can be discretized by the finite difference approach using 

the first-order neighborhood system. Each pixel has four neighbors: the north, south, 

west and east neighbor pixels. Assuming 

! 

"x = "y =1 in the two-dimensional case, the 

discretized version of Equation (4.3) is  
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! 

I
(i, j )

< t+1>
" I

( i, j )

< t>

#t
= p

(i"1, j ) $ %( i"1, j )I
< t>

+ p
(i+1, j ) $ %( i+1, j )I

< t>
+ p

(i, j"1) $ %( i, j"1)I
< t>

+ p
(i, j+1) $ %( i, j+1)I

< t>  ( 4.5 )  

where <t> and <t+1> represent the iteration step t and t+1 respectively; 

! 

"t  is the 

discretized time step; p(.,.)‘s are diffusivity function values at the neighboring pixels of 

location (i,j); and ∇(.,.)I is a notation for the difference between 

! 

I
(",")and

! 

I
(i, j ) itself. The 

parameters of PDE2D are: Δt, σ, δ, and the number of iterations (denoted by iter_num). 

4.2.2.2 PDEtomo  

In the breast CT line integral images, noise is larger toward the chest wall. When 

the photon fluence is reduced, the phenomenon becomes even more obvious. A line 

profile with I0=2.0e3 is shown in Figure 4.4 to help illustrate this point. It can be 

explained theoretically. Again, a simplifying assumption of monochromatic beam is 

used. If 

! 

Iij ~ Poisson("ij )

lij = log
I0

Iij
= log I0 # log Iij

    ,                                                ( 4.6 ) 

where λij is the expected number of photons arriving at location (i, j) of the detector, 

then the variance of the line integral

! 

lij  can be approximated by the delta method [116] 

using the second-order Taylor expansion:  

! 

var(lij ) = var(log Iij ) " var(Iij )•[(log Iij )']
2
" #ij •

1

Iij
2
"
1

Iij
.   ( 4.7 ) 

This formalism can be integrated into the PDE denoising technique by adapting 

the parameter 

! 

"  in the diffusivity function spatially as: 

! 

"ij = k # var(lij ) = "
0
#

1

1

M
e
lc

c$N (i, j )

%
,      ( 4.8 ) 

where M equals to 4, and N (i, j) is the four closest neighbors around pixel (i, j).    
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The resultant PDE denoising technique is denoted PDE for 

Tomography/Tomosynthesis (PDEtomo). The parameters to be considered are: Δt, σ, δ0, 

and iter_num. 

4.2.2.3  PDE3Dpost 

When the PDE denoising is applied on the reconstructed volume at step 4 as 

shown previously in Figure 4.2 instead of the line integral data, its neighborhood system 

expands to six neighbors along x, y and z directions. Otherwise this variant of the 

algorithm, denoted as PDE3Dpost, is implemented in the same way as before. 

 

Figure 4.4: One-dimensional line integral profiles across the breast on a projection 
image. The dashed (blue) and continuous (red) plots correspond to noise free case 
and the case with I0=2.0e3, respectively. The variance of line integral is larger at the 
center of breast region, and gets smaller toward the skin. 
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4.2.3 Image Evaluation 

The metrics for quantitative evaluation of the denoising technique are calculated 

based on the reconstructed slices of the simulated breast. 

The contrast of the lesion is defined as the relative difference between the 

average pixel values within the lesion and those outside the lesion. The noise level is 

characterized by the percentage noise, that is, the standard deviation of the pixel values 

within a uniform ROI relative to the mean value. The CNR measure is the ratio of 

contrast of the lesion to the percentage noise. 

The normalized cross correlation (NCC) is a mathematical operation defined as 

[117]: 

! 

NCC(s,t) =
( f (x,y) " f (x,y))(w(x " s,y " t) " w )

y
#

x
#

{[ ( f (x,y) " f (x,y))
2
] $ [ (w(x " s,y " t) " w ]

2
)}

1

2

y
#

x
#

y
#

x
#

 ,  ( 4.9 ) 

where (x,y) and (s,t) are spatial position indices, 

! 

f and 

! 

w  are an image and a template 

respectively, and,

! 

f and 

! 

w  are their average values over the space .  

For a simulated breast with contrast detail phantoms, the figure of merit was the 

number of detectible lesions, which was counted automatically by thresholding each 

lesion’s CNR as well as NCC of each lesion with its ideal version. The threshold was set 

to 1.0 for CNR and 0.28 for NCC. 

4.3  Results 

4.3.1 Parameter Choice 

The number of detectible lesions from the contrast detail phantom is used as the 

figure of merit (FOM). For each technique, the parameters are multi-dimensionally grid-

searched for the best combinations. The best parameters for PDEtomo with iter_num=10 
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are: Δt=0.1, σ=1 and δ0=0.03. Figure 4.5 shows how the FOM varies as a function of Δt 

or δ0 when other parameters are kept at optimized values. Matching the background 

noise level with PDEtomo, PDE3Dpost has the best parameter set as: iter_num=4, Δt=0.2, 

σ=0.15, and δ0=0.07.  

 

Figure 4.5: Performance from contrast detail phantom as a function of (a) Δt, or (b) 
δ0, parameters in the PDEtomo technique, with all other parameters held at their 
optimal values. 

 

4.3.2 Step Comparison 

Figure 4.6 shows the reconstructed thin sections of a) the ideal contrast detail 

phantom, b) the image after adding noise corresponding to exposure I0=2.5e4, c) the 

image denoised by PDE3Dpost algorithm applied at step 4 and d) the same image 
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denoised by PDEtomo algorithm applied at step2, matching the background noise with 

the one in Figure 4.6 (c). The reconstructed slice thickness was 0.5 mm and within-plane 

pixel dimension was 0.8 mm. Figure 4.7 shows the corresponding results at I0=1e4. The 

noise level is higher in Figure 4.7 (b) as compared to Figure 4.6 (b). The background noise 

in the processed volumes in Figure 4.7 (c) and (d) is comparable to those in Figure 4.6 (c) 

and (d). The sensitivity defined as the ratio of the numbers of detectible lesions to the 

total number of 80 for each case is shown in Figure 4.8.  
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(a) Ideal     (b) With Noise: I0=2.5e4 

 

(c) PDE3Dpost     (d) PDEtomo 

 

Figure 4.6: Step comparison at I0=2.5e4. To (a) an ideal contrast detail phantom, 
noise is added to yield (b) the initial image without any denoising. (d) PDEtomo noise 
removal before the FBP reconstruction is better than (c) after reconstruction. 
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(a) Ideal     (b) With Noise: I0=2.5e4 

 

(c) PDE3Dpost     (d) PDEtomo 

 

Figure 4.7: Step comparison at I0=1e4. Figure 4.7 (b) is noisier than Figure 4.6 (b). For 
subfigures (c) and (d), they come to the same conclusion: (d) PDEtomo applied at step 
2 is better than (c) PDE3Dpost applied at step4. 
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Figure 4.8: Comparison between denoising applied to reconstruction steps 2, 3 and 
4, using CNR and NCC as the criteria. Denoising at step 2 before reconstruction 
consistently provides higher number of detectible lesions or sensitivity, as does 
increasing the exposure level. 

 

4.4 Discussion 

Dedicated breast CT imaging possesses the potential for improved lesion 

detection over conventional mammograms, especially for women with dense breasts. The 

breast CT images are acquired with a glandular dose comparable to that of standard 

two-view mammography for a single breast. Hence the reconstructed volume has a 

substantial amount of noise when very thin coronal-view slices are viewed. It is thus 

desirable to remove the noise in the reconstructed breast volume without losing the 

resolution.  
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Along the breast CT reconstruction process, there are three feasible steps for a 

denoising technique. Thus the aim of this study is to investigate which step will give the 

best result. The comparison between step 2 and step 4 is especially interesting, because 

noise can be better characterized in step 2 whereas the PDE technique works better for 

the underlying data structure in step 4, which is piecewise constant data with sharp 

edges. For the comparison study, a contrast detail phantom is used, which represents 

the clinically important task of detecting small, low contrast lesions. 

Visual comparison between PDEtomo and PDE3Dpost processed volumes show that 

PDEtomo results in superior denoised volume than PDE3Dpost. Even though the 

background noise are matched for two volumes, as is shown in Figure 4.6 and Figure 4.7, 

PDE3Dpost processed volume exhibits some unpleasant mottle, which is especially true in 

Figure 4.7 (c). The noise mottle is due to the FBP reconstruction process, which correlates 

the independent quantum noise in the projection views. By contrast, PDEtomo processed 

volumes are exempt from this effect. Applying PDE technique between filtering and 

back-projection steps (step 3) results in reconstructed slices visually similar to Figure 4.6 

(d) and Figure 4.7 (d). 

Quantitative results based on the lesion detection sensitivity of the contrast 

detail phantom agree with the qualitative evaluation. While the CNR and NCC criteria 

don't give the same number, they are very close to each other and provide the same 

trend: PDEtomo processed volumes (step 2) have more detectible lesions than processed 

ones by PDE2D (step 3) and PDE3Dpost (step 4). Moreover, given that the background 

noise is matched, when the exposure level is higher, the lesion detection sensitivity is 

higher for all three variants of PDE technique according to the CNR criterion. 

To summarize, three separate techniques were developed for three different steps 

in the reconstruction process. By optimizing each of them independently, it was found 

that denoising before reconstruction provides better images than after reconstruction. 
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This is understandable, since some fine details in the volumes can be overwhelmed by 

the abundant noise during the reconstruction step. Applying denoising afterwards 

cannot recover that information. By contrast, if a denoising technique is applied before 

reconstruction, it is possible for the fine details to be preserved. As far as we know, this 

is the first time that anybody has studied the effect of where to apply denoising in 

dedicated breast CT. In the next chapter, the best technique here - PDEtomo technique - 

will be compared with other techniques that are also applied at step 2 for further 

evaluation.   
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5 Noise Removal in Breast CT: the PDEtomo Technique 

As a continuation of the theme in previous chapter about the noise removal in 

breast CT, this one introduces more simulation studies on the PDEtomo technique for its 

comparison to two other spatially adaptive denoising techniques. The PDEtomo is also 

applied to the clinical datasets. 

5.1 Introduction 

Dedicated breast CT imaging is designed at present stage to acquire images using 

a glandular dose level same as that of standard two-view mammography. Hence the 

reconstructed volume has a non-negligible quantum noise when thin section CT slices are 

visualized. It is thus desirable to remove the noise in the reconstructed breast volume 

without losing the resolution.  

A good candidate denoising technique should have the following property: 

removing noise while maintaining the spatial resolution. In the literature, many 

techniques satisfying this requirement have been developed. Among them are level set 

methods [118], multi-resolution denoising techniques [119-124], and Partial Diffusion 

Equation (PDE) based techniques [110, 111].  Some modeling based denoising 

techniques are also developed [107]. 

In this study, besides the PDEtomo technique described in section 4.2.2.2 of 

Chapter 4, two more spatially adaptive denoising techniques are implemented, applied 

on the projection data with preprocessing (step 2 shown in Figure 4.2), and compared to 

PDEtomo. Of them, Wiener filter [125] is a linear spatially adaptive technique whereas 

Adaptive Trimmed Mean (ATM) filter [113, 126] is a nonlinear spatially adaptive 

technique. As is noted from Chapter 4, PDEtomo technique is also a nonlinear spatially 

adaptive technique.  
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Quantitative comparisons are made using simulated data at various exposure 

levels. First, the detailed comparison between the PDEtomo and Wiener filter based on a 

single low-contrast lesion is given. Second, the ATM is added into the comparison using 

the contrast detail phantoms. Third, the noise-resolution tradeoff plots of three 

techniques are compared to each other using a single high-contrast lesion. Moreover, the 

PDEtomo technique is applied to dedicated breast CT scan data from several human 

subjects for qualitative evaluation of its denoising performance.  

5.2 Materials and Methods 

5.2.1 Human Subject Datasets 

Volunteer human subjects were recruited in the University of California Davis 

Medical Center consistent with an IRB protocol and their breast CT datasets were 

acquired on the custom-built dedicated breast CT system (described in section 2.2). For 

each human subject dataset, the projection images were obtained under 80 kVp using a 

circular orbit. The mAs values are chosen for each subject in such a way that the mean 

glandular dose using breast CT is equal to two-view mammography. Each subject is 

scanned within 20 seconds to get a total of 530 projection images that span slightly over 

360 degrees. After bad pixel and flat field correction (described in section 2.2.3), each 

dataset is ready for tomographic reconstruction (described in section 2.3). 

5.2.2 Denoising Techniques  

5.2.2.1 Wiener filter 

A Wiener filter is used at step 2 for comparison against the PDE technique 

investigated in this study. Both techniques are spatially adaptive filters. However, the 

Wiener filter is a linear technique whereas the PDE technique is nonlinear. 
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For each pixel, its mean (µ) and variance (σ2) around a local neighborhood is 

estimated. Then the Wiener filter updates l(x,y) to the new ln(x,y) through: 

! 

ln (x,y) = µ +
" 2

#$ 2

" 2
(l(x,y) #µ)       ( 5.1 ) 

where υ2 is the average of σ2 values. 

The variable parameter in the Wiener filter is the size of the neighborhood. In this 

study, 3x3, 5x5 and 7x7 kernels are considered. 

5.2.2.2  Adaptive Trimmed Mean (ATM) filter 

Like the PDE filters described in Chapter 4, the ATM filter is also a nonlinear 

spatially adaptive technique. The one-dimensional ATM filter presented in reference 

[113] is expanded to two-dimensional. The window size M and the trimming parameter 

α are adjusted according to the local pixel value: 

! 

M =
2"#

2# + "x

$ =
$
m
x

#

,         ( 5.2 ) 

where x is pixel value on raw projections, and beta and lambda are two parameters of 

the ATM filter. When x is zero, the window size M obtains its maximal value at beta.  

5.2.3 Image Evaluation 

The metrics of contrast of the lesion, noise level, and contrast-to-noise ratio 

(CNR) [73] described in section 4.2.3 are utilized in this study. Again, these metrics are 

calculated based on the reconstructed slices of the simulated breast. In addition, the 

NCC is also calculated for contrast detail phantoms for technique comparison. 

Moreover, the spatial resolution [73] is quantified based on high-contrast lesions. 

The corresponding volumes are target reconstructed (in-plane resolution is 0.2 mm) 
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around the high-intensity sphere. If a specified denoising technique is to be evaluated, it 

is applied to the projection images before they are sent to the FBP reconstruction core for 

the targeted reconstruction. Then the edges of the circular disc within a reconstructed 

slice are averaged radially. For each specific denoising technique, a Gaussian function is 

fitted to the edge with standard deviation of σ0, and the full width at half maximum 

(FWHM) of that function is measured as: 

! 

FWHM = 8 " log2 #$ 0 = 2.3548$ 0.      ( 5.3 ) 

5.3 Results 

5.3.1 Simulation Results: Comparison between denoising techniques 

In Figure 5.1, the three columns correspond to the reconstructed slices of the 

simulated breast CT data without denoising, with Wiener denoising (kernel 3x3) and 

with the PDEtomo denoising, respectively. The four rows show the results using varying 

photon fluences using I0=2.5e3, 5e3, 7.5e3 and 2.5e4 correspondingly from the top to the 

bottom. The noise level is appreciably lower for each successive row. The reconstructed 

slice thickness is 0.5 mm and within-plane pixel dimension is 0.8 mm. These slices 

contain a lesion at the center, which is only barely visible for the highest fluence level 

(bottom panel) with the original dataset. With Wiener processing, the lesion is visible for 

the higher two fluence levels. With PDEtomo processing, the lesion is visible for the higher 

three fluence levels.  

As a counterpart of Figure 5.1, Figure 5.2 shows a magnified view of the 

periphery of the breast, using targeted reconstruction with the same slice thickness and a 

reduced within-plane pixel size of 0.2 mm. The sharpness of the image is manifest in the 

skin line. The trends are similar to the lesion detection task above, such that higher 

exposures (going down the rows) greatly improve the noise level and sharpness of the 
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skin line. Similarly, improvements in noise were apparent going from left to right for 

original, Wiener, and PDEtomo filtering techniques, respectively. 

 

Figure 5.1: Reconstructed slices of original, Wiener (3x3 kernel) and PDEtomo 
processed datasets in a simulation study with varying photon fluence levels. The 
lesion is located at the center of each slice. 
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Figure 5.2: Target reconstructed slices of original, Wiener (3x3 kernel) and PDEtomo 
processed datasets in a simulation study with varying photon fluence levels, 
corresponding to the data in Figure 5.1.  
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To demonstrate the effect of denoising on the uniformity of the noise level across 

the image, another reconstructed coronal view slice containing only homogeneous breast 

tissue is shown in Figure 5.3 (a). For the horizontal centerline, the standard deviation of 

a local 7x7 ROI centered at each pixel on that horizontal line is plotted in Figure 5.3 (b) 

to (d) for photon fluence of 2.5e3, 5e3 and 2.5e4. 

In all three cases, the original plots present a non-uniform level of noise such that 

the interior section has higher standard deviation values, that is, higher noise levels than 

the periphery. Wiener processing reduces the overall noise level, but the non-uniform 

trend remains in Figure 5.3 (b) and (c) corresponding to lower photon fluences. The 

PDEtomo processed images reduce not only the noise level but also the uniformity of the 

plot for all three fluence levels. Only at the highest fluence level did Wiener filtering 

converge towards the performance of the PDEtomo technique.  

The simulation of noise in projection images using the measurement model shown 

in Equation (4.1) was repeated 10 times. Each one was reconstructed without denoising 

(original datasets) or after denoising (Wiener or PDEtomo processed). The CNR values 

for the single low-contrast lesion are summarized with mean and standard deviation. 

The results are plotted in Figure 5.4.  
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 (a) Reconstructed Slices Without a Lesion 

 

 

(b) I0=2.5e3 
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(c) I0=5.0e3 

 

(d) I0=2.5e4 

 

Figure 5.3: (a) Reconstruction slices without a lesion. Along the horizontal lines 
marked in (a), standard deviations of local 7x7 ROI are plotted for original, Wiener 
(3x3 kernel) and PDEtomo processed datasets at I0 of (b) 2.5e3, (c) 5e3 and (d) 2.5e4. 
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Figure 5.4: CNR comparison between the original, Wiener (3x3 kernel) and PDEtomo 
processed volumes in a simulation study with I0=2.5e4.  

 

At the highest fluence of 2.5e4, mean CNR values of the Wiener and PDEtom o 

processed images are 3.59 and 4.08 times that of the original one, respectively. The 

PDEtomo has consistently higher CNR values than Wiener filter for the same data. The 

paired two-tailed Student t test gives a p-value of 0.0036, which indicate the difference 

between the CNR values of PDEtomo and Wiener filter are statistically significant. Similar 

trends were observed at the lower fluence levels.  

The comparison of PDEtomo against Wiener and ATM filters based on contrast 

detail phantoms is shown in Figure 5.5. PDEtomo gives the largest number of detectible 

lesions for the contrast detail phantom, followed by ATM and then Wiener filter, 

according to the CNR criterion.   
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Figure 5.5: Comparison of techniques using contrast detail phantoms. All images 
were acquired with the lower exposure of 1e4 counts. PDEtomo is the best among 
three denoising techniques for this task. 

 

In addition, the noise-resolution result is given in Figure 5.6. In Figure 5.6 (a), the 

first image shows the full view reconstructed slice with a high-intensity sphere 

embedded into the center of the breast tissue. The ROI for targeted reconstruction is 

marked on the slice. The original target reconstructed ROI as well as the wiener denoised 

one are to the right of the first row. In the second row of Figure 5.6 (a), the PDEtom o 

denoised result is shown in the middle. To its left, a Gaussian kernel is directly applied 

to the original target-reconstructed slice and its resultant blurred slice obtains the same 

noise level as the PDEtomo result. To its right, a corresponding Gaussian blurred one 

obtains the same resolution level. As a comparison, the PDEtomo achieves a low noise 

level and the high resolution simultaneously.   
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The noise and resolution values are plotted in Figure 5.6 (b) for PDEtomo, Wiener 

and ATM techniques. The Wiener filter is applied using a 3x3 kernel. PDEtomo processing 

resulted in lower noise than Wiener filtering (4.7% and 12%, respectively). At the same 

time, PDEtomo also provided better resolution than Wiener filtering (0.22 vs. 0.29 mm, 

respectively). The ATM filter provided the same 0.22 mm resolution as PDEtomo, while 

reducing noise to 2.0%. However, the ATM reconstructed image shows a cupping 

artifact, which is absent in the PDEtomo processed images. The cupping artifact is 

evident in the one-dimensional profile through the center of the high-contrast object, as 

shown in Figure 5.7. Note that the rectangle represents the location where the noise level 

is measured, and does not capture the non-uniformity problem. 
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(a) Reconstructed Slices 
     Full View – Original    ROI-Target Recon - Orig      ROI-Target Recon – Wiener 

 

 ROI-Gaussian – Match Noise  ROI-Target Recon – PDEtomo  ROI-Gaussian – Match Res 

 

 

 

 

 

 

 

 

 

 

 



 

66 

(b) Noise Resolution Plot 

 

Figure 5.6: (a) Target reconstruction around a high contrast object from original, 
Wiener processed and PDEtomo processed datasets, and (b) noise-resolution plot at 
I0=2.5e4. 

 

Figure 5.7: One-dimensional profile of the reconstruction through the center of the 
high contrast object using PDEtomo and ATM filter.  
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5.3.2 Human Subject Results 

When applied to the clinical datasets, the parameters of PDEtomo used are: 

Δt=0.1, σ=1, δ0=0.03 and iter_num=10. 

Figure 5.8 to Figure 5.12 show the coronal reconstructed slices from human 

subject 1 with and without the PDEtomo technique. The slice thickness is 0.5 mm. The 

small region marked in Figure 5.9 is zoomed in and shown in Figure 5.10.  

                

 Original                 PDEtomo 

 

Figure 5.8: Human subject No.1 slice 60. 
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Original                 PDEtomo 

 

Figure 5.9: Human subject No.1 slice 80. 

 

Original                PDEtomo 

 

Figure 5.10: Human subject No.1 slice 80 –smaller ROI corresponding to the 
rectangle in Figure 5.9. 
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    Original                        PDEtomo 

 

Figure 5.11: Human subject No.1 slice 100. 

 

     Original                        PDEtomo 

 

Figure 5.12: Human subject No.1 slice 120. 
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  Original                  PDEtomo 

 

Figure 5.13: Human subject No.2 slice 60. 

 

    Original                   PDEtomo 

 

Figure 5.14: Human subject No.2 slice 80. 
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      Original                       PDEtomo 

 

Figure 5.15: Human subject No.2 slice 100. 

 

        Original                 PDEtomo 

 

Figure 5.16: Human subject No.2 slice 100 –smaller ROI corresponding to the 
rectangle in Figure 5.15. 
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      Original                      PDEtomo 

 

Figure 5.17: Human subject No.2 slice 120. 

 

Similarly, the results of human subject 2 are shown in Figure 5.13 to Figure 5.17. 

The small region marked in Figure 5.15 is zoomed in and shown in Figure 5.16. By visual 

comparison, PDEtomo technique (right column) reduces the noise considerably while 

maintaining the resolution of the original reconstruction (left column). 

5.4 Discussion 

A partial diffusion equation (PDE) based denoising technique was specifically 

developed for processing breast tomography data. This PDEtomo technique takes into 

account the noise distribution characteristic in the projection image after converting to 
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the line integrals via the nonlinear logarithm operation. From the contrast detail phantom 

study in the previous chapter, PDEtomo is able to generate good reconstructed images 

with reduced noise and maintained details. That previous study focuses on the 

comparison between the steps where a denoising technique can be applied along the 

breast CT reconstruction process. This study continues on the investigation of PDEtomo 

as a good candidate for breast CT denoising. Specifically, it is compared with two other 

spatially adaptive techniques imaging: Wiener and ATM filters.   

Both the quantitative results in the simulation study and the visual inspection in 

human subject data study showed the promise of this new PDEtomo technique. In the 

simulation study, it was compared with the Wiener technique, an adaptive technique 

that is accepted as a competitive denoising tool. The results show that the new 

denoising technique can achieve lower noise level in the reconstructed volume with higher 

resolution than Wiener technique. The low contrast lesion put in the center of the 

simulated breast can be better detected on the PDEtomo processed datasets than on the 

Wiener processed datasets, as is shown in Figure 5.1. Not only is the noise in the 

reconstructed slices filtered by PDEtomo lower than those by Wiener filtering, but the 

noise levels all over the breast region tend to be more uniform as well. This is shown in  

Figure 5.3. The advantage of PDEtomo over Wiener filtering in terms of decreased noise 

level and improved noise uniformity are both more evident for lower dose cases, which 

indicates that the PDEtomo technique holds promise for processing datasets acquired at 

lower dose levels. PDEtomo processed results have lower and more uniform local noise 

levels than Wiener results. The difference is more manifest at lower fluence level. 

Even though the theoretical description of the noise variance in the projection 

image due to the quantum noise and the logarithm operation is more approximate for the 

empirical data, the PDEtomo technique still provides good denoised images.  
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There are some limitations in this study. Firstly, the simulated breast CT data are 

based on a monochromatic x-ray beam with the kV value set to be approximately the 

same as the mean kV value of the x-ray beam used to acquire the empirical data. 

Secondly, the parameters in the measurement model used for adding noise to the 

simulated projection images are all hypothetical, given that presently their empirical 

values are unknown. Hence, the task of calibrating the dose in the simulation study 

cannot be fulfilled at this stage. In future work, considerable optimization remains to be 

performed to calibrate the PDEtomo technique using empirical images taken with physical 

phantoms as well as human subjects. Given the robust trends shown in this study, 

however, the PDEtomo technique should continue to match or outperform the Wiener and 

ATM techniques, especially if dose is further lowered such as to achieve a breast CT 

scan with equal or less dose than a single conventional mammogram. 

Due to the very low photon fluence on each projection view in dedicated breast 

CT, the electronic noise is one of the major sources of the overall noise, especially in 

dense breast regions or if the dose is further reduced. The present version of the PDEtomo 

technique does not consider the effects of additive electronic noise. It will be worthwhile 

to explore the possibility of taking the characteristics of this type of noise into account 

in the denoising technique or to combine it with a statistical-modeling approach that 

explicitly treats the electronic noise.  

In conclusion, a Partial Diffusion Equation based denoising technique was 

developed specifically for dedicated breast CT data. By incorporating into the algorithm 

the knowledge of the non-uniform distribution of the noise in the projection image after 

the preprocessing step, it provides excellent denoised data with sharp edges. The 

technique shows the most promise on datasets acquired with lower dose.
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6 Breast Mass Detectibility Study 

In Chapters 3 to 5, various image-processing techniques for scatter removal and 

noise removal were introduced. In particular, chapters 4 and 5 relied upon uniform, 

simulated backgrounds to facilitate algorithm evaluation. Since medical images are 

acquired to aid doctors for abnormality diagnosis, it will be very useful to analyze how 

the previously described image processing tools affect the lesion detectibility. 

Particularly, we are interested in breast mass detectibility in actual human subject data 

from dedicated breast CT imaging. This chapter gives preliminary results on the topic. In 

the study, numerical observers and ROC analysis are used.  

6.1 Materials and Methods 

6.1.1 Datasets and Mass Simulation 

At this time, very few groups are conducting clinical trials with dedicated breast 

CT. We were very fortunate to have secured from Boone et al at University of California 

Davis 20 human subject datasets to be used for the breast mass detectibility study. As 

these are prospectively collected cases, the ground truth of these 20 volumes is 

unknown. In present study, we will assume that there is no lesion in the volumes. And 

all the lesions of interest will be simulated.  

The procedure of simulating a mass is as follows: 

1. For a given human subject dataset, the reconstructed volume is used as the 

reference. The location of 10 masses that will be embedded into the volume is 

randomly chosen. 

2. Spherical masses with fixed size and contrast are put at the locations selected in 

step 1, and projected onto a virtual 100% DQE detector using a virtual 
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monochromatic cone-beam projector, which has the same system geometry, 

projection angles and reconstruction parameters as the individual human subject 

dataset. These projection images of masses will be added to the original 

projection images of human subjects to get the synthetic projection sets. 

3. The synthetic projection sets either go through the denoising technique followed 

by FBP reconstruction or directly go for FBP reconstruction. 

4. The three-dimensional region of interest (ROIs) can then be retrieved from the 

reconstructed volumes. In the present study, instead of using 3D ROIs, only the 

x-y plane section containing the mass (i.e., 2D ROIs) is retrieved for numerical 

observer study. 

Using the 80 ROIs containing contrast detail mass phantoms in simulated, 

uniform backgrounds, a PDE denoising technique was optimized. This technique was 

then applied to the human subject ROI dataset, which is comprised of a total of 400 

ROIs, 200 with and 200 without simulated masses. 

6.1.2 Numerical Observers 

6.1.2.1 Ideal Observer for SKE/BKE 

The task of an observer is to detect these masses from background tissues. It can 

also be formulated as the following hypothesis testing: 

! 

H
0
: x = n

H
1
: x = n + s

 .          ( 6.1 ) 

The null hypothesis represents the mass absent case, whereas the alternative hypothesis 

represents the mass present case. If treated as signal known exactly (SKE) case, 

according to signal detection theory [127], the optimal detector is a likelihood ratio 
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detector. Assuming the background noise n follows a Gaussian distribution with a 

covariance matrix of Σ, the log likelihood ratio has the following form: 

xsx
T 1))(ln( !
"=# .        ( 6.2 ) 

If the background noise follows independent and identical distributed (i.i.d.) Gaussian, 

i.e., the covariance matrix Σ is an identity matrix, then Equation (6.2) can be further 

simplified to: 

2/))(ln( !" xsx
T

= .        ( 6.3 ) 

Usually real breast tissue background does not satisfy the i.i.d. condition, so the 

ideal observer shown in Equation (6.3) will perform sub-optimally on the real breast 

tissue background case. 

6.1.2.2 Laguerre-Gauss Channelized Hotelling Observer (LG-CHO) 

When the covariance matrix Σ is not an identity matrix, the likelihood ratio 

observer shown in Equation (6.2) is equivalent to a Hotelling observer [128]. The 

estimation of the covariance matrix Σ requires a large number of training cases, which is 

presently not available in breast CT. Alternatively, Laguerre-Gauss channelized hotelling 

observer (LG-CHO) [128, 129] can be used for this purpose.  

The nth order Laguerre function has the following form: 
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            The LG-CHO has nth order template with the form of: 
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where a is a free parameter proportional to the standard deviation of the Gaussian 

kernel through 

! 

a = 2"# .         ( 6.6 ) 

6.1.2.3 CNR Observer 

Finally, the contrast to noise ratio for each ROI is calculated and used as the 

decision variable. Given the uncertainties associated with any model observer study, it is 

desirable to be able to compare all results against such a simple, well-understood 

technique. 

6.1.3 ROC Analysis 

The receiver operating characteristic (ROC) analysis is a comprehensive tool for 

performance measure of the numerical observers. The horizontal axis represents False 

Positive Fraction (FPF), which equals to (1- specificity), and the vertical axis represents 

True Positive Fraction (TPF), which equals to sensitivity. They both range from 0 to 1. A 

ROC curve can be summarized by its area under the curve (AUC). The larger AUC 

value, the better the performance is, while AUC of 0.5 corresponds to random guessing. 

The area can also be calculated via semi-parametric fitting resulting in an area index 

denoted as Az [130]. 

6.2 Results 

6.2.1 Sample ROIs 

Figure 6.1 to Figure 6.6 give sample ROIs with real anatomical background 

structure on reconstructed breast CT slices. The first pair of images is for 5 mm and 10% 

simulated masses. The second pair is for 5 mm and 3% simulated masses. The third pair 

is for 4 mm and 2% simulated masses. On each of these figures, (a) and (b) are the 
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original ROIs without and with a simulated mass at the center; whereas (c) and (d) are 

the ROIs from a PDE denoised volume without and with a simulated mass.  

 

 

 

                               (a) Orig; nomass        (b) Orig; mass 

 

         (c) PDE; nomass               (d) PDE; mass 

 

Figure 6.1: Sample ROIs No.1 for simulated lesion of 5 mm and 10%: Original ROIs 
(a) without mass and (b) with a mass, and, PDE denoised ROIs (c) without mass 
and (d) with a mass.   
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                   (a) Orig; nomass     (b) Orig; mass 

 

         (c) PDE; nomass               (d) PDE; mass 

 

Figure 6.2: Sample ROIs No.2 for simulated lesion of 5 mm and 10%: Original ROIs 
(a) without mass and (b) with a mass, and, PDE denoised ROIs (c) without mass 
and (d) with a mass.   
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        (a) Orig; nomass   (b) Orig; mass 

 

                   (c) PDE; nomass               (d) PDE; mass 

 

Figure 6.3: Sample ROIs No.1 for simulated lesion of 5 mm and 3%: Original ROIs (a) 
without mass and (b) with a mass, and, PDE denoised ROIs (c) without mass and 
(d) with a mass.   
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        (a) Orig; nomass               (b) Orig; mass 

 

         (c) PDE; nomass               (d) PDE; mass 

 

Figure 6.4: Sample ROIs No.2 for simulated lesion of 5 mm and 3%: Original ROIs (a) 
without mass and (b) with a mass, and, PDE denoised ROIs (c) without mass and 
(d) with a mass.   
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        (a) Orig; nomass               (b) Orig; mass 

 

        (c) PDE; nomass                (d) PDE; mass 

 

Figure 6.5: Sample ROIs No.1 for simulated lesion of 4 mm and 2%: Original ROIs (a) 
without mass and (b) with a mass, and, PDE denoised ROIs (c) without mass and 
(d) with a mass.   
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       (a) Orig; nomass        (b) Orig; mass 

 

         (c) PDE; nomass               (d) PDE; mass 

 

Figure 6.6: Sample ROIs No.2 for simulated lesion of 4 mm and 2%: Original ROIs (a) 
without mass and (b) with a mass, and, PDE denoised ROIs (c) without mass and 
(d) with a mass.   

 

6.2.2  Contrast Detail Phantom Results 

CNR observer and LG-CHO observer results are shown in Figure 6.7 and Figure 

6.8 respectively for the contrast detail phantom embedded in a uniform background.  

In Figure 6.7 (a), the histograms of CNR for original and PDE processed ROIs 

with and without simulated masses are plotted. It is obvious that PDE processed ROIs 
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with simulated masses have higher CNR values than original ROIs with masses. The Az 

values were obtained using the software package ROCKIT (Charles Metz, University of 

Chicago). For original dataset, the Az is 0.933 ± 0.020; and for PDE processed dataset, 

the Az is 0.998 ± 0.005. The corresponding two-tailed p-value is 0.0009, indicating that 

Az of PDE processed dataset is statistically higher than Az of the original dataset.  The 

ROC curves are shown in Figure 6.7 (b). 

 Figure 6.8 (a) plots the AUC values with 1st order LG template with varying a 

value, which is equivalent to a Difference of Gaussian (DoG) filter [131]. It is shown that 

when a value is greater than 14 AUC values are close to 1. LG template is then fixed at 

a=18 with various orders, whose AUC values are shown in Figure 6.8 (b). The 1st order 

LG template gives the highest AUC value. 
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(a) 

 

(b) 

 

Figure 6.7: CNR observer results for contrast detail phantoms embedded in a 
simulated uniform background. CNR histograms for original and PDE processed ROI 
databases are shown in (a) and the corresponding ROC curves are shown in (b). 
The Az value of the PDE processed dataset (0.998 ± 0.005) is statistically higher 
than the Az value of the original dataset (0.933 ± 0.020). The p value is less than 
0.01.  
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(a) 

 

(b) 

 

Figure 6.8: LG-CHO observer results for contrast detail phantoms embedded in a 
simulated uniform background.  
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6.2.3 Human Subject Background Results 

The human subject background ROC analysis based on CNR observer is shown 

in Figure 6.9 for simulated mass of 4 mm and 2%. The histograms of CNR for original 

and PDE processed datasets with and without simulated masses are shown in Figure 

6.9 (a). The corresponding ROC curves are plotted in Figure 6.9 (b). The Az value of the 

PDE processed dataset (0.770 ± 0.023) is higher than the Az value of the original 

dataset (0.801 ± 0.022). The p value is less than 0.009, indicating that the difference is 

statistically significant. AUC values of the three types of numerical observers using real 

anatomical background from breast CT are shown in Table 6.1 for lesions of 5 mm and 

10%, 5 mm and 3%, and 4 mm and 2%, respectively. For all the cases, the CNR observer 

gives the highest AUC values, followed by 1st order LG template, and the ideal observer 

gives the lowest AUC values. For masses with 4 mm diameter and 2% contrast, the ROC 

performance of ideal observer reduces to the chance curve. 
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(a) 

 
(b) 

 

Figure 6.9: CNR observer results for simulated lesions of 4mm and 2% embedded in 
real anatomical backgrounds. CNR histograms for original and PDE processed ROI 
databases are shown in (a) and the corresponding ROC curves are shown in (b). 
The Az value of the PDE processed dataset (0.770 ± 0.023) is statistically higher 
than the Az value of the original dataset (0.801 ± 0.022). The p value is less than 
0.01. 



 

90 

Table 6.1: AUC values for the three types of numerical observers using real 
anatomical background from breast CT.  

Lesion CNR observer 
LG-CHO observer 

( a=22 & n=1 ) 
Ideal observer 

 Original 
PDE 

processed 
Original 

PDE 
processed 

Original 
PDE 

processed 

5mm & 
10% 

 

0.999 

 

0.997 0.999 0.999 0.896 0.904 

5mm & 
3% 

 

0.877 

 

0.883 0.850 0.853 0.690    0.700 

4mm & 
2% 

 

0.770 

 

0.801 0.703 0.702 0.446 0.443 

 

6.3 Discussion 

Some studies [132-136] have shown that numerical observers can be good 

candidates for lesion detection tasks without the tremendously time consuming and 

tedious process of human observer studies. In this study, a SKE ideal observer, nth order 

LG-CHO templates, and CNR observers are used for detecting the simulated masses in 

the anatomical background. As expected, SKE ideal observer worked sub-optimally 

whereas LG-CHO worked much better than SKE case. The CNR observer as a simple 

one works the best. 

For the contrast detail phantoms in a simulated uniform breast background, the 

initial AUC based on CNR observer is 0.933 ± 0.020. After PDE denoising, the AUC 

improves to 0.998 ± 0.005, which is close to the perfect performance. The improvement 

is statistically significant with two-tailed p<0.001. 
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For the ROIs with real anatomical backgrounds, the ROC curves vary with 

respect to the mass size and contrast. For masses with 5 mm and 10%, it is very easy to 

detect them, whereas for masses with 4 mm and 2%, the detection task is extremely 

challenging. Even in such conditions, PDE denoising always provided statistically 

significant improvements in performance, as well as higher CNR values and better visual 

appearance.  

There are some limitations in this study. First, the simulated masses are perfect 

spheres, which are rare in the real situation. A more realistic mass simulation may render 

more advantages toward evaluating nonlinear image processing techniques such as 

PDEtomo. Second, the ROIs are two dimensional due to the limited number of human 

subject datasets available. In the future, when more human subject datasets are 

collected, three-dimensional ROIs can be used instead. Third, in this study, individual 

LG-CHO channels are used for ROC analysis. An ensemble LG-CHO is often used with 

the form: 

! 

w = "
m
LG

m
(r)

m= 0

n

# ,        ( 6.7 ) 

where the parameters (α1, α2, α3,….)  are determined by Hotelling Observer.   

 A common problem shared by all the observers is the tendency to perform too 

well due to the fixed, single type of lesion. Even for the subtlest lesions that were 

virtually impossible to see by the human eye, the observers routinely performed quite 

well with ROC areas approaching 0.8. As such, such model observer performances 

should not be construed as what would be typical of clinical performance by 

radiologists. Instead, these studies offer valuable insight in terms of comparing one 

technique against another in a fair (or equally unfair) fashion. The best techniques from 

such a study may then be validated in human observer studies in the future. 



 

92 

In summary, several numerical observers are used to analyze the mass 

detectibility in breast CT using simulated uniform background and real anatomical 

background. With simulated uniform background and contrast detail phantoms, the 

PDE denoised datasets give the better results than the original datasets using CNR 

observer. The performances are similar when LG-CHO templates are used. With real 

anatomical background with fixed size lesion, PDE denoised images have higher 

detectability, higher CNR and better qualitative appearance.   
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7 Conclusion and Future Work 

7.1 Summary 

This dissertation described some image processing techniques in dedicated breast 

CT imaging. Specifically, it explored the techniques for scatter removal and noise 

removal. The noise removal technique is then evaluated further by the simulated mass 

detectibility study utilizing mathematical observers. 

The first chapter introduced the background of this dissertation: breast cancer 

and the motivation of developing dedicated breast CT imaging modality.  

The second chapter first introduced the feasibility of dedicated breast CT 

imaging for mass and micro-calcification detections. It then gave some technical 

description of the prototype dedicated breast CT system fabricated in University 

California Davis, which is the source of the data presented in this dissertation.  Finally, 

the custom-written FBP reconstruction algorithm for the cone-beam geometry was 

described. 

Chapter 3 focused on the first aspect of image processing in breast CT: scatter 

removal. The model based mathematical scatter compensation scheme was followed. A 

new Gaussian noise model was proposed. The corresponding MLE and MAP estimates 

of scatter-free image were derived and some preliminary results on the FFDM system 

was obtained. It was compared with the previously developed Poisson noise model and 

the connection was extracted. In model x-ray breast imaging techniques, such as FFDM, 

breast tomosynthesis and breast CT, flat-panel detectors are the detectors of the choice 

due to its many attractive characteristics. The Gaussian noise model successfully 

grasped the energy integrating property of a flat-panel detector.  
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In Chapter 4 and 5, the second aspect of image processing in breast CT was 

explored: noise removal. When a denoising technique is used for dedicated breast CT, 

there are four possible steps in the reconstruction process where it can be incorporated. 

Chapter 4 focused on the evaluation and comparison between these steps to find the 

best location for application of denoising techniques. Three variants of partial diffusion 

equation based denoising techniques were developed for three different steps, optimized 

individually and compared against each other based on a simulated breast with contrast 

detail phantoms. It was found that denoising before reconstruction provided better 

sensitivity of mass detection as well as better visual appearance of the processed 

volumes. Especially, the PDEtomo technique applied at step 2 after pre-processing but 

before reconstruction gave the best results among all. 

In Chapter 5, further evaluation of the PDEtomo technique described in Chapter 4 

was investigated. It took account of the knowledge of the non-uniform distribution of the 

noise in the projection image after the preprocessing step. Both Wiener filter and a two-

dimensional adaptive trimmed mean (ATM) filter were developed and applied to step2. 

All these techniques are spatially adaptive techniques for noise removal. Yet, Wiener 

filter is a linear technique, whereas ATM and PDEtomo are nonlinear techniques. They 

were compared to each other based on a simulated, uniform breast with a single low-

contrast lesion, contrast detail phantoms, or a single high-contrast object. The PDEtom o 

technique was an overall winner of all cases. Its advantage was even more obvious when 

the dose level is lowered, which may have substantial clinical implications for future 

tomosynthesis or tomography applications. The PDEtomo technique was then applied to 

the human subject breast CT data. Qualitatively, it provided pleasant denoised volumes 

with much lowered noise and maintained details.  

Chapter 6 focused on the simulated mass detectibility study using the clinical 

data as the background and mathematical observers. To the best of our knowledge, this 
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was the first ever such study conducted on human subject breast CT data. The PDE 

denoised datasets improved mass detectibility performance statistically significantly 

over a wide range of lesion sizes and contrasts, and also improved CNR and visual 

appearance of the reconstructed volumes. 

7.2 Future Direction 

There are several future directions to extend the study in this dissertation.  

The Gaussian noise model is presently only evaluated on the projection images 

from FFDM system. It will be of natural interest to apply it to the dedicated breast CT 

datasets. In order to do so, the physical measurement on the system of the scatter kernel 

parameters is a critical first step. The technique can then be evaluated first on some 

physical phantoms, such as PMMA phantoms. And it can then be evaluated on the 

human subject datasets where the true scatter radiation measurement is often not well 

characterized due to the dose constraints. 

The preliminary results of PDEtomo technique on human subject datasets already 

showed its promise for the application. Yet, the technique is optimized based on the 

simulation study. As pointed out at the end of Chapter 5, the connection between 

simulation and clinical studies is unknown. Therefore, the parameter choice for PDEtomo 

used in clinical situation might be sub-optimal.  Only when this connection is truly 

established, can we optimize the technique for the clinical application.  

At the end of Chapter 5, some further development of PDEtomo technique was 

briefly described. For example, the technique can be extended to explicitly consider the 

electronic noise. In addition, it can be extended to a tensor-based 3D denoising 

technique applied to the data after pre-processing but before reconstruction by including 

the neighboring projection information.    
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Finally, more work can be done for the simulated mass study in Chapter 6. 

Rather than a perfect sphere, more realistic 3D masses can be simulated. Moreover, 

noises can be added to the breast CT datasets to simulate various reduced dose levels. 

As suggested by the results with low dose data in Chapter 5, with lower dose levels, it 

will be more advantageous to use PDEtomo for noise removal. 

In conclusion, this dissertation has demonstrated promising progress towards 

several state of the art algorithms to compensate for scatter and noise in tomographic 

imaging. Several new image processing techniques were proposed based on the unique 

physical properties of this modality. An exhaustive series of phantom simulation 

studies were conducted to validate the proposed techniques, which were then applied 

for the first time to human subject data. These are the first steps towards the eventual 

goal of optimizing image quality and thus diagnostic utility for the novel modality of 

dedicated breast CT imaging. 
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Appendix  Derivation of MLE Algorithm Based on Gaussian 

Noise Model 

Due to the convolution operation, the estimation of B = {bi; i=1…N} directly from 

Y does not have a simple analytic form. The MLE of B is thus derived through the EM 

algorithm as follows.  

Treat the measured Y = {yi, i=1,…,N} as an incomplete dataset, and unobserved 

(D,S) = {(di,si), i=1,…,N} as a complete dataset. The di ’s and si ’s given B are mutually 

independent, therefore the complete data likelihood is 
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Assuming {σi1
2, σi2

2 ; i=1,…,N} are known, we can obtain the complete data log 

likelihood by taking the logarithm on both sides, 
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The EM algorithm is comprised of two steps: one, the E-step, where the 

expectation of the complete data log likelihood with respect to the present estimate of B 

is computed, and two, the M-step, where a new estimate of B is obtained which will 

maximize the computed expectation in the E-step. 

First, employ the E-step: 
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Second, the M-step to find B(n+1) that will maximize Q(B|B(n)): 
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Solving the above equation for bk gives 
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Using B(n) to approximate B(n+1) in the right-hand side yields 
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As a good estimate of the primary image is formed, 0)**(
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The same apparent form was obtained for Poisson noise model in the Reference 

[137]. But due to the different statistical models, the actual forms of dk
(n) are different 

and so is the iterative formula for bk. 

Equation (A7) combines with equation (A4) to give the following updated 

equation: 
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Dedicated breast CT imaging is a novel breast imaging modality, which may 

improve lesion detection while using the same radiation dose as compared against 

conventional mammography. However, since the breast CT images divide the dose of 

mammography among hundreds of projection views, resulting in considerable quantum 

noise, it is therefore desirable to reduce noise in the reconstructed breast volume without 

loss of spatial resolution.  

Several partial diffusion equation (PDE) based denoising techniques were 

developed for dedicated breast CT. The techniques were thoroughly evaluated based on 

simulation. It was found that applying a denoising technique before reconstruction 

provided better images than after reconstruction. In addition, a spatially adaptive PDE 

technique denoted by PDEtomo (which takes into the account the non-uniform 

distribution of the noise in the projection images after the preprocessing step) 

outperformed other techniques. The PDEtomo tool was analyzed for the clinically 

relevant task of lesion detectability in human subjects, using numerical observers and 

ROC analysis methodology.  

The preliminary ROC study showed that with a fixed size lesion in real 

anatomical backgrounds, PDE-denoised images had higher detectability (statistically 

significant), higher CNR and better qualitative appearance. The promising new 



techniques for volume noise removal pave the way for future implementations of 

dedicated breast CT. 



 

  
Abstract—Dedicated breast CT is an emerging new technique 

for breast cancer imaging. It was found that low dose levels 
comparable to those used in the conventional two-view 
mammography could be used for breast CT data acquisition. 
Since the dose is equally split into the hundreds of projection 
views, each projection image contains non-ignorable quantum 
noise and/or electronic noise. This study is aimed at investigating 
how volume noise removal affects the mass detectability in breast 
CT.  Both simulated and real breast CT data were considered in 
the study. For the simulated breast volumes, contrast detail 
phantoms of masses with varying sizes and contrasts were 
simulated and embedded. For the real human subject breast CT 
volumes, spherical masses with fixed size and contrast were 
simulated and embedded. A Partial Diffusion Eqn (PDE) based 
denoising technique applied before reconstruction was tested. 
Using a mathematical observer based on CNR values of masses, it 
is found that PDE denoising technique improves the mass 
detectability in a statistical significant sense. In addition, the 
results of LG-CHO observer and ideal observer on the human 
subject breast CT data are also presented.  
 

Index Terms—breast cancer, tomography, noise, breast CT, 
lesion detection, observer study  
 

I. INTRODUCTION 
The advance of flat panel detector technology made it 

possible to develop some three dimensional breast cancer 
imaging techniques, such as breast tomosynthesis[1] and 
dedicated breast CT[2]. Breast tomsynthesis acquires high-
resolution projection images over a limited angle range. Its 
tomographic reconstruction is complicated by incomplete 
sampling and therefore is the focus of many research 
endeavors[3-6]. Intrinsically, reconstructed breast 
tomosynthesis volumes have high within-plane resolution and 
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low cross-plane resolution. By contrast, dedicated breast CT 
acquires projection images over the full 360-degree angle 
span; whose tomographic reconstruction is conventional and 
can generate isotropic resolution both within plane and cross-
plane. Due to the practical consideration, the flat-panel 
detector in breast CT system has lower spatial resolution than 
the one used in breast tomosynthesis system. Thus, the 
resolution in the reconstructed volume of breast CT is in-
between the within-plane and cross-plane resolutions of breast 
tomosynthesis volumes.  

 Another image quality metric is noise level. Currently, 
dedicated breast CT techniques use the same dose as the one 
of conventional two-view mammography[7], which is split 
among hundreds of projection images. Due to the Poisson 
process of the projection views, the quantum noise is higher 
than the noise on mammograms. These noisy projection 
images are then combined by a reconstruction algorithm to 
generate the reconstructed volume, whose noise level is 
particularly affected by the noisiest projection channel. In a 
separate study[8], we found that applying a noise removal 
module before reconstruction is much better than applying 
after reconstruction.  

The motivation for the work presented in this paper is to 
investigate the effectiveness of a noise removal module in 
terms of mass detectability in breast CT. Consistent with our 
paper[8], we will use the partial diffusion Eqn (PDE) based 
denoising technique applied on the line integral projection 
images. 

II. METHODS 

A. Dedicated Breast CT System 
A dedicated breast CT system is set up differently from the 

conventional CT system. Rather than illuminating the whole 
torso, it only illuminates a breast of the patient.  Figure 1 is an 
illustration of the major components of a typical breast CT 
system. The lead-shielded bed on which the patient lies prone 
was not shown in this illustration. The x-ray tube and the 
vertically standing flat panel detector rotate concurrently for a 
span of 360 degrees.  

B. Datasets and Mass Simulation 
There are two types of breast CT data used in this study: the 

ones acquired virtually for a simulated breast with simulated 
contrast detail phantoms  in the middle of  the breast;   and  the 

Mass Detectability in Dedicated Breast CT: A 
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Volume Noise Removal 
Jessie Q. Xia*, Member, IEEE and Joseph Y. Lo 



 

 

Figure 1: In a dedicated breast CT system, the x-ray tube and flat-panel 
detector rotate simultaneously around the breast. 
 
 
human-subject breast CT data from Dr. Boone’s lab at 
University of California Davis.   

Figure 2 shows the cross-section of the simulated breast with 
contrast detail phantoms. Each of the five 4x4 arrays in 
contrast detail phantoms has masses with sizes varying 
vertically (6, 5, 4 and 3 mm) and contrasts varying 
horizontally (15%, 10%, 5% and 3%). Square regions 
containing all 80 masses form the 2D ROIs for numerical 
observer study.  

As the 20 human subject datasets used for the breast mass 
detectability study were prospectively collected cases, the 
ground truth of their volumes is unknown. In present study, 
we will assume that there is no lesion in the volumes. And all 
the lesions of interest will be simulated.  

The procedure of simulating a mass in human subject breast 
CT data is as follows: 

Step1: For a given human subject dataset, the reconstructed 
volume is used as the reference. The locations of 10 masses 
that will be embedded into the volume are randomly chosen. 

Step2: Spherical masses with fixed size and contrast are put 
at the locations selected in Step 1, and projected onto a virtual 
100% DQE detector using a virtual monochromatic cone-
beam projector, which has the same system geometry, 
projection angles and reconstruction parameters as the 
individual human subject dataset. These projection images of 
masses will be added to the original projection images of 
human subjects to get the synthetic projection sets. 

Step3: The synthetic projection sets either go through a 
denoising module followed by FBP reconstruction or directly 
go for FBP reconstruction. 

Step4: The three-dimensional region of interest (ROIs) can 
then be retrieved from the reconstructed volumes. In the 
present study, instead of using 3D ROIs, only coronal region 
of interest containing the center of masses (i.e., 2D ROIs) are 
retrieved for numerical observer study. 

Using the 80 ROIs containing contrast detail mass 
phantoms in simulated, uniform backgrounds, a PDE 
denoising technique was optimized. This technique was then 
applied to the human subject ROI dataset, which is comprised 
of a total of 400 ROIs, 200 with and 200 without simulated 
masses. 
 

 
 

Figure 2: Coronal view of a simulated breast and contrast detail 
phantoms. 

 

C. Volume Noise Removal 
The PDEtomo technique[8] for volume noise removal in 

breast CT is used in this study. Details of the technique can be 
found in Ref. xx. A brief description of the technique is as 
follows.  

The image to be denoised is denoted as I. A nonlinear partial 
diffusion Eqn on I will be:  

! 
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where 

! 

"I  is the gradient of the image I and 

! 

" # (*)  is the 
divergence operator on image I over the spatial variables. By 
carefully selecting the appropriate p(*), the diffusivity 
function, the image can be processed in such a way that not 
only noise is reduced but also the details in the image will be 
preserved. To bound the gradient values in the presence of 
noise, a Gaussian kernel Gσ with the standard deviation of 
sigma σ is convoluted with the image before gradients are 
computed as Catte et al [9] suggested.  

In this study, we chose a diffusivity function with the form 
of 
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where delta 
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"  is a user-specified parameter. The parameter 
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acts like a cut-off value; image regions with gradient norm 
below 

! 

"  will have more noise removed while regions with a 
higher gradient norm will stay sharp. We used a spatially 
adaptive type of the parameter 
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where M equals to 4, and N (i, j) is the four closest neighbors 
around pixel (i, j) of image I. 

Eqn (1) can be discretized by the finite difference approach 
using the first-order neighborhood system. Each pixel has four 
neighbors: the north, south, west and east neighbor pixels. 



 

Assuming 

! 

"x = "y =1 in the two-dimensional case, the 
discretized version of Eqn (1) is  
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where <t> and <t+1> represent the iteration step t and t+1 
respectively; 

! 

"t  is the discretized time step; p(.,.)’s are 
diffusivity function values at the neighboring pixels of 
location (i,j); and ∇(.,.)I is a notation for the difference 

between 

! 

I
(",")and

! 

I
(i, j ). The parameters used in this study are: 

Δt=0.1, σ=1, δ0=0.03, and the number of iterations = 10. 
D. Numerical Observers 
D.1. Ideal Observer 
The task of an observer is to detect these masses from 

background tissues. It can also be formulated as the following 
hypothesis testing: 

! 

H
0
: x = n

H
1
: x = n + s  .                 ( 5 ) 

The null hypothesis represents the mass absent case, 
whereas the alternative hypothesis represents the mass present 
case. If treated as signal known exactly (SKE) case, according 
to signal detection theory[10], the optimal detector is a 
likelihood ratio detector. Assuming the background noise n 
follows a Gaussian distribution with a covariance matrix of Σ, 
the log likelihood ratio has the following form: 

xsx
T 1))(ln( !
"=# .                ( 6 ) 

If the background noise follows independent and identical 
distributed (i.i.d.) Gaussian, i.e., the covariance matrix Σ is an 
identity matrix, then Eqn (6) can be further simplified to: 

2/))(ln( !" xsx
T

= .               ( 7 ) 

This is the ideal observer. Usually real breast tissue 
background does not satisfy the i.i.d. condition, so the ideal 
observer shown in Eqn (7) will perform sub-optimally on the 
real breast tissue background case. 

D.2. Laguerre-Gauss Channelized Hotelling Observer (LG-
CHO)  

When the covariance matrix Σ is not an identity matrix, the 
likelihood ratio observer shown in Eqn (6) is equivalent to a 
Hotelling observer [11]. The estimation of the covariance 
matrix Σ requires a large number of training cases, which is 
presently not available in breast CT. Alternatively, Laguerre-
Gauss channelized hotelling observer (LG-CHO) [11, 12] can 
be used for this purpose.  

The nth order Laguerre function has the following form: 
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The LG-CHO has nth order template with the form of: 
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where a is a free parameter proportional to the standard 
deviation of the Gaussian kernel through 

! 

a = 2"# .                 ( 10 ) 

D.3. CNR Observer 
Traditionally, one would like to use Rose model of statistical 

detection for a simple lesion detectability study based on x-ray 
projection images. However Rose model does not directly 
apply to the breast CT reconstructed slices in this study since 
the physical measurement on these reconstructed slices is 
linear attenuation coefficients. Instead, the contrast to noise 
ratio for each ROI is calculated and used as the decision 
variable. Given the uncertainties associated with any model 
observer study, it is desirable to be able to compare all results 
against such a simple, well-understood technique. 

E. ROC Analysis 
The receiver operating characteristic (ROC) analysis is a 

comprehensive tool for performance measure of the numerical 
observers. Of the two axes on ROC plots, the horizontal axis 
represents False Positive Fraction (FPF), which equals to the 
value of one minus the specificity; and the vertical axis 
denotes True Positive Fraction (TPF), which equals to the 
sensitivity. FPF and TPF both range from 0 to 1. A metric of 
ROC curve is the area under the curve (AUC). The larger 
AUC value, the better the performance is, while AUC of 0.5 
corresponds to random guessing. The area can also be 
calculated via semi-parametric fitting resulting in an area 
index denoted as Az[13]. 

III. RESULTS 
Results are presented hereafter for two cases: contrast detail 

phantoms in simulated breast CT background, and masses 
with fixed size and contrast in human subject background. 
First we present in Figure 3 and Figure 4 two sample ROIs for 
simulated masses embedded in the anatomical background. 
The top row showed the ROIs derived from the original 
dataset, whereas the bottom row showed the ROIs from the 
processed dataset with volume noise removal. The left column 
showed the ROIs without masses, while the right column 
showed the ROIs containing the simulated masses following 
Step1 to Step 4 in Methods section B.  

A. Contrast Detail Phantom Results  
CNR observer result is shown in Figure 5 for the contrast 

detail phantom embedded in a uniform background.  
In Figure 5 (a), the histograms of CNR for original and PDE 

processed ROIs with and without simulated masses are 
plotted. It is obvious that PDE processed ROIs with simulated 
masses   have  higher  CNR  values  than  original  ROIs   with 



 

       (a) Orig; nomass                       (b) Orig; mass 

 
          (c) PDE; nomass                       (d) PDE; mass 

 
 

Figure 3: Sample ROIs No.1 for simulated lesion of 5 mm and 3%: 
Original ROIs (a) without mass and (b) with a mass, and, PDE denoised 
ROIs (c) without mass and (d) with a mass.   

 
 (a) Orig; nomass               (b) Orig; mass 
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Figure 4: Sample ROIs No.2 for simulated lesion of 4 mm and 2%: 
Original ROIs (a) without mass and (b) with a mass, and, PDE denoised 
ROIs (c) without mass and (d) with a mass.   

 
masses. The Az values were obtained using the software 
package ROCKIT (Charles Metz, University of Chicago). For 
original   dataset,  the  Az   is  0.933  ±  0.020;  and  for    PDE  
 

                                                 (a)   

 
  (b) 

 
Figure 5: CNR observer results for contrast detail phantoms embedded in 
a simulated uniform background. CNR histograms for original and PDE 
processed ROI databases are shown in (a) and the corresponding ROC 
curves are shown in (b). The Az value of the PDE processed dataset 
(0.998 ± 0.005) is statistically higher than the Az value of the original 
dataset (0.933 ± 0.020). The p value is less than 0.01. 
 
processed dataset, the Az is 0.998 ± 0.005. The corresponding 
two-tailed  p-value  is  0.0009,   indicating  that  Az   of   PDE 
processed dataset is statistically higher than Az of the original 
dataset.  The ROC curves are shown in Figure 5 (b). 

B. Human Subject Background Results  
The human subject background ROC analysis based on 

CNR observer is shown in Figure 6 for simulated mass of 4 
mm and 2%. The histograms of CNR for original and PDE 
processed datasets with and without simulated masses are 
shown in Figure 6(a). The corresponding ROC curves are 
plotted in Figure 6(b). The Az value of the PDE processed 
dataset (0.801 ± 0.022) is higher than the Az value of the 
original dataset (0.770 ± 0.023). The p value is less than 
0.009, indicating that the difference is statistically significant.  



 

Table 1: Numerical observer AUC values for simulated masses in real 
anatomical background of breast CT. 
 

  (a) 

 
(b) 

 

Figure 6: CNR observer results for simulated lesions of 4mm and 2% 
embedded in real anatomical backgrounds. CNR histograms for original 
and PDE processed ROI databases are shown in (a) and the 
corresponding ROC curves are shown in (b). The Az value of the PDE 
processed dataset (0.801 ± 0.022) is statistically higher than the Az value 
of the original dataset (0.770 ± 0.023). The p value is less than 0.01. 

 

AUC values of the three types of numerical observers using 
real   anatomical background  from  breast  CT  are  shown  in 
Table 1 for lesions of 5 mm and 10%, 5 mm and 3%, and 4 
mm and 2%, respectively. For all the cases, the CNR observer 
gives the highest AUC values, followed by 1st order LG 
template, and the ideal observer gives the lowest AUC values. 
For masses with 4 mm diameter and 2% contrast, the ROC 
performance of ideal observer reduces to the chance curve. 

IV. DISCUSSION 
Some studies [14-18] have shown that numerical observers 

can be good candidates for lesion detection tasks.  
As compared to human observers, numerical observers 

posses several advantages, such as higher repeatability, and 
better tolerance of tedious process of observer studies. In this 
study, detectability of simulated masses in both simulated 
breast CT background and the real anatomical background 
were investigated. CNR observers were used in both cases. In 
addition, a SKE ideal observer and nth order LG-CHO 
observers were used for detecting the simulated masses in the 
anatomical background. As expected, SKE ideal observer 
worked sub-optimally whereas LG-CHO worked much better 
than SKE case. The CNR observer as a simple one worked the 
best, as is evident in Table 1. 

For the contrast detail phantoms in a simulated uniform 
breast background, shown in Figure 5, the initial AUC based 
on CNR observer is 0.933 ± 0.020. After PDE denoising, the 
AUC improves to 0.998 ± 0.005, which is close to the perfect 
performance. The improvement is statistically significant with 
two-tailed p<0.001. 

With real anatomical backgrounds, masses with a single 
combination of size and contrast was embedded. And the 
resultant ROC curves are a function of both the mass size and 
contrast. It is very easy to detect large masses (e.g., 5 mm in 
diameter and 10% in contrast), whereas the detection task is 
extremely challenging for subtle masses (e.g., 4 mm in 
diameter and 2% in contrast). Using a CNR observer in the 
latter condition showed that PDE denoising provided 
statistically significant improvements in performance, as well 
as higher CNR values and better visual appearance.  

There are some limitations in this study. First, the simulated 
masses are perfect spheres, which are rare in the real situation. 
A more realistic mass simulation may render more advantages 
toward evaluating nonlinear image processing techniques such 
as PDEtomo. Second, the ROIs are two dimensional due to the 
limited number of human subject datasets available. In the 
future, when more human subject datasets are collected, three-
dimensional ROIs can be used instead. Third, in this study, 
individual LG-CHO channels are used for ROC analysis. An 
ensemble LG-CHO is often used with the form: 

Lesion 5mm & 

10% 

5mm & 

3% 

4mm 

& 2% 

Original 0.999 0.877 0.770 CNR 

Observer PDE processed 0.997 0.883 0.801 

Original 0.999 0.850 0.703 LG-CHO 

Observer PDE processed 0.999 0.853 0.702 

Original 0.896 0.690 0.446 Ideal 

Observer PDE processed 0.904 0.700 0.443 



 

! 

w = "
m
LG

m
(r)

m= 0

n

# ,              ( 11 ) 

where the parameters (α1, α2, α3,….)  are determined by 
Hotelling Observer.   
 A common problem shared by the observers is the tendency 
to perform too well due to the fixed, single type of lesion. 
Even for the subtlest lesions (masses with 4mm in diameter 
and 2% in contrast in this study) that were virtually impossible 
to see by the human eye, the observers routinely performed 
quite well with ROC areas around 0.7 to 0.8. As such, such 
mathematical observer performances should not be construed 
as what would be typical of clinical performance by 
radiologists. Instead, these studies offer valuable insight in 
terms of comparing one technique against another in a fair (or 
equally unfair) fashion. The best techniques from such a study 
may then be validated in human observer studies in the future. 
In summary, several numerical observers are used to analyze 
the mass detectability in breast CT using simulated uniform 
background and real anatomical background. With simulated 
uniform background and contrast detail phantoms, the PDE 
denoised datasets give the better results than the original 
datasets using CNR observer. The performances are similar 
when LG-CHO templates are used. With real anatomical 
background with fixed size lesion, PDE denoised images have 
higher detectability, higher CNR and better qualitative 
appearance.   

V. CONCLUSION 
This manuscript has presented ROC study using simulated 

masses and mathematical observers. With either simulated 
background or the real anatomical breast CT background, 
volume noise removal of breast CT dataset improves 
significantly the detectability of masses. 
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